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Abstract

In this paper we describe a novel approach to player valuation
and team formation based on players influence within a team.
Specifically, we propose a model of teamwork that considers
outcomes of passages of plays (interactions of passes between
players). Based on our model, we devise a number of metrics
to capture the contribution of players and pairs of players.
This is then used to learn the value of teamwork from his-
torical team performance data. We apply our model to predict
team performance and validate our approach using real-world
team performance data provided by StatsBomb. Our model is
shown to better predict the real-world performance of teams
by up to 46% compared to models that ignore the strength of
interactions between players.

1 Introduction
Due to the number of different positions and roles within a
football team, it can be a challenge to value how each player
contributes to the team performance. This normally leads to
player ratings and tactical decisions being made due to sub-
jective opinions through human decision making. There are
techniques from Artificial Intelligence (AI) which can help
us to value players and form teams which could be used for
manager suggestions or team contribution values for the me-
dia and team.

The Team Formation (TF) problem that is presented by
football is similar to the concept that underpins many multi-
agent systems where heterogeneous agents with individual
properties (e.g., roles, capabilities, costs) come together to
undertake tasks. TF involves the evaluation of different sets
of agents in order to determine how well they will, individ-
ually or collectively, perform their tasks. By so doing, it is
then possible to pick sets of agents that form the most effec-
tive teams. This means that we can use similar techniques
from this domain to the football TF problem. A similar real-
world example where these techniques are also used are
shown in teams of emergency responders which are formed
based on individual agent’s abilities to navigate a difficult
environment or address threats (Chalkiadakis and Boutilier
2012). Similarly, in ride-sharing settings, groups of riders
can be efficiently formed to minimise travel time and costs

(Bistaffa et al. 2017b).1 In this paper we apply these types
of techniques to the problem presented by football where we
can value players and sets of players contribution to a team
and then form a optimal team based on the values that we
calculate.

Against this background, we propose a novel approach to
valuing players contribution in a team and forming teams
using patterns that appear in a network of interactions be-
tween players. We are then able to validate and evaluate
our approach by applying our models and algorithms to a
real-world team formation problem presented by football.
We show that our teamwork-focused model outperforms
other player-focused approaches at predicting the teams that
would be chosen by human-expert managers across games
across 2 seasons in the English Premier League (EPL) and
from the 2018 FIFA World Cup. We also show that our
model is better at predicting the performance of teams from
real world data. Thus, this paper advances the state of the art
for research in football in the following ways:

1. We propose a novel approach to team formation based on
the value of players team-work. Specifically, we propose
a model that considers the outcomes of passages of play.

2. Based on our model, we propose a number of metrics to
capture the contributions of individual players and pair of
players to the team and the game outcomes.

3. We show how the value of teamwork can be learnt from
data and then applied to the prediction of team perfor-
mance.

When taken together, our results establish benchmarks for
team formation algorithms in football and gives a new
method to value players within the team.

The rest of this paper is organised as follows. In Section
2 we review the literature, while Section 3 defines the basic
definitions and how we apply these to the problem. Section
4 discusses how we model the passage of plays and Section
5 provides the detail of methods that we use to value the
players in the team. Section 6 shows how we form optimal
teams and then we perform a number of Experiments on our

1Note that TF is different to coalition formation in terms of its
focus on inter-agent interactions and non-selfish agents.



model in Section 7 and the findings are discussed in Section
8. Finally, Section 9 concludes.

2 Related Work
Boon and Sierksma (2003) discuss the design of optimal
teams and calculates the value-added from new team mem-
bers. Following on from this, (Vilar et al. 2013) look to un-
derstand how players’ and teams’ strategies result in suc-
cessful and unsuccessful relationships between teammates
and opponents in the area of play. There have also been ap-
plications to form optimal teams for fantasy football using
an MIP and performance predictions in (Matthews, Ram-
churn, and Chalkiadakis 2012). Our models differ from the
previous work as we model the team as a weighted-directed
network of agents and value players based on their influence
on the team and the teamwork between players. We then
form teams using a novel algorithm with MIP techniques.

There are examples in multi-agent systems literature
which form teams using analysis of agents within a net-
work. Gatson and DesJardins (2005), propose a number of
strategies for agent-organised networks and evaluate their
effectiveness for increasing organisational performance. The
same authors also present an agent-based computational
model of team formation, and analyse the theoretical per-
formance of team formation in two simple classes of net-
works - ring and star topologies (Gaston and DesJardins
2008). Recently, (Bistaffa et al. 2017b) proposed a coop-
erative game theoretic approach to deal with the problem of
social ridesharing. They first formed a social network rep-
resentation of a set of commuters, then proposed a model to
form the coalition and arrange one-time rides at short notice.
The authors model their problem as a Graph-Constrained
Coalition Formation (GCCF) (Bistaffa et al. 2017a). Their
model is based on two principles, first they solve the op-
timisation problem for making coalitions while minimising
the cost of the overall system. The set of feasible coalitions
in their model is restricted by a graph (i.e., the social net-
work). Secondly, they address the payment allocation aspect
of ridesharing.

To our knowledge, none of the discussed approaches have
looked at directed interactions between team members (such
as passes) and how chains of interactions lead to different
team outcome events. More importantly, these approaches
have only been validated on synthetic data. Instead, our work
is validated on granular data about team performance in real-
world games involving teams of humans shown by football.

3 Basic Model Definitions
In football, a manager/coach selects a team of 11 players
from a squad of 25 in the EPL or 23 in the World Cup. The
objective is to select a team with the highest chance of win-
ning a game. Against this background, we define the squad
of players as our set of agents A, the interactions I are the
passes between the players in earlier games, and the graph
G represents the network of passes between all the players
in the squad. The passage of play P is made up from a num-
ber of passes which represent interactions between players.
In football, a passage of play is ended by some event (e.g.,

tackle, shot, goal, miss and ball out of play). We charac-
terise events into 4 possible outcomes, E = {e1, e2, e3, e4},
where e1 is a Goal, e2 a shot on-target, e3 a shot off-target
and e4 is a loss of possession. We are then able to learn
the weights αi for each outcome. In this case we assume
α1 > α2 > α3 > α4. Using the model discussed in the Sec-
tion 5 we calculate the value of each player v(ai) and form
an optimal team based on the values considering the specific
positional constraints of a football team. An example of a
passage of play is shown in Figure 1 where the red arrows
represent the passes between players and the blue arrow rep-
resents the outcome of the walk which in this case was a shot
on target.

There are some positional constraints that are specific to
football, making it more complex than a standard team for-
mation problem. Each team in a game of football must have
1 goalkeeper and 10 outfield players which are formed from
defenders, midfielders and strikers. In most positional for-
mations in football there are between 3-5 defenders, 3-5
midfielders and 1-3 strikers. An example formation is 4-4-
2 which is 4 defenders, 4 midfielders and 2 strikers.

Figure 1: Example of a Walk in Football

4 Modelling Passage of Plays
Players will interact sequentially with each other (i.e., player
ax interacts with ay who in turn interacts with az). To this
end, we define a passage of play as a sequence of passes
between players in the data. Another example of a similar
sequence of interactions in a real-world application would
be the movement of a data-packet through a mesh network
where the packet moves from router to router until it reaches
the destination.

A passage of play leads to an event of a specific type. For
example, a player scoring a goal at the end of a sequence of
passes or a data packet being used to complete a file down-
load. There may be many different event types. Formally, the
set of possible events E is defined as E = {e1, e2, . . . , ek}
where eκ is the event and k is the number of possible events
from the walk.

Each of the possible events eκ may have a different impact
on the environment and therefore affect the overall perfor-
mance of the team. Thus, for each e ∈ E , the value function
α : E → [0, 1] determines an associated value. For exam-
ple, in a game of football if the event eκ is a “goal” event,
this will have a bigger impact on the overall outcome of the
game and team performance in comparison to if eκ is a “loss
of possession” event .
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Figure 2: An example of 4 passage of plays through a sam-
ple graph of 11 players for an event ek. The directed edge
between two vertex represents the interaction between them
and each highlighted colour represents a passage of play.

Note that each passage of play originates from one player
and involves chains of directed interactions between pairs
of players, resulting in an event. Hence, we next propose
methods to extract the contribution of each player as well as
sets of players to these individual events.

5 Valuing Players in the Team
Passage of plays P and associated events E can be used to
infer the value of players and sub-sets of players within the
team. We propose two metrics to value the contribution of
individual players and sets of players as follows:

• Centrality: vcent : A → Z refers to the sum of the weight
of edges incident (incoming and outgoing) to ai. This
measures the influence of player ai in the network. Thsi
is used to value individual players.

• Frequency: vfreq : 2A → Z refers to the number of times
an player or a subset of players appears in all passage
of plays. This represents the influence of an agent in the
team. This is used to value sub-sets of players within the
team.

It is important to note that these metrics attempt to sum-
marise team performance in different ways, each with a dif-
ferent degree of information loss. Using centrality results
in the most loss of information as it ignores who the inter-
actions are made with. Using walk frequency considers all
pairwise interactions that lead to specific events, and as we

show later, is more representative of teamwork and can be
used to predict the performance of teams more effectively.

Now, for each event, we will have different values for each
metric for each player or sets of players (as for frequency).
However, each event has a different impact on team perfor-
mance (e.g., goals lead to a win, loss of possession likely
to lead to a loss), and to determine the contribution of an
player or subset of players to team performance, we need to
learn the impact each metric has on the team’s performance
(discussed in Section 5.3). We assume that each event is in-
dependent and therefore use a weighted sum of the values
for each of the possible events. This is shown in Equation 1.

vm(ai) =

K∑
k=1

αkvm(ai|ek) (1)

where, vm(ai) is the value of ai using the metric m, K
is the number of possible events, αk is the weight of the
event ek (which is learned from the data) and vm(ai|ek) is
the value of ai given the event ek. We next expand on the
above metrics in the following sub-sections.

5.1 Network Centrality
Here we value an player ai based on their centrality in the
network. This value is equal to the sum of the weights of
the edges incident to node ai (both incoming and outgo-
ing edges). For example, in the graph shown in Figure 2,
vcent(a9|ek) = w8 +w9 +w10. Equation 2 shows the value
calculation using the centrality metric for any player ai for
the given event eκ:

vcent(ai|eκ) =
∑

aj∈Adj (ai)

w(ai, aj) + w(aj , ai) (2)

5.2 Frequency
The frequency of an ordered set of players A′ =
[ax, ay, ..., az] based on the passage of play frequency is
the number of times the player(s) A′ appears in all the pas-
sage of player. For example, in Figure 2, suppose the pas-
sage of play [a4, a9, a5] occurs three times, the passage of
play [a7, a3, a7, a3, a11, a9] occurs four times, [a3, a10, a8]
occurs twice and [a1, a6, a2, a3] occurs once. In this case
the value of A′ = [a9] will be vfreq(A′|ek) = 3 + 4 = 7.
The same reasoning can be applied to subsets of players.

We can compute such a metric for all sub-sets of players
in the passage of play. Given a passage of play P of length l,
the number of sub-sets of players of length j constructed
from the play P is calculated by picking the consecutive
j + 1 vertices in the play P . The total number of sub-sets
of length l is

∑l−1
j=1(l − j + 1) and extracting such sub-sets

from each play is relatively straightforward. We focus on
sub-sets involving pairs of players as we combine such pairs
in a combinatorial optimisation algorithm to consider chains
of passes. We next describe how we will learn the weights
of events αk to compute Equation 1.

5.3 Learning Event Weights From Data
As shown in Equation 1 we must learn weights for the event
outcomes. To learn the set of weightsW , which correspond



to the impact of the possible walk events E , we use a Logis-
tic Regression algorithm (Hosmer Jr, Lemeshow, and Sturdi-
vant 2013). This allows us to extract the coefficient weights
of each of the input features i.e., the weight ακ (which cor-
responds to an event ei) which is used to calculate the final
value vm(ai) for each agent or sub-team of agents.

Hence, for an outcome y (e.g., a team wins a match), the
probability that an player ai contributes to this outcome is
dependent on the individual events (eκ) to which an agent
contributes, as captured by the metrics computed in the pre-
vious section. This can be summarised as per the linear com-
bination in Equation 3.
p(y|ai) = α0 + α1vm(ai|e1) + ...+ αkvm(ai|ek) (3)

The result of running the logistic regression algorithm is the
set of weights ακ∀eκ ∈ E . Given this, we can now compute
efficient teams according to the learnt measures.

6 Forming Teams
We use two methods to form efficient teams using values that
are calculated in the previous section. Firstly, we form teams
based on the values of singleton agents. Secondly, we form
teams based on the value of pairs that the agents appear in,
so that teams are formed between agents who communicate
and work well together.

6.1 Individual Player Approach
To form the efficient team based on individual player val-
ues, we use the values v(ai) (depending on the value met-
rics m) for each player ai. We use these values alongside
constraints over players’ positions to form the optimal team.
The approach we use to solve this is an edited version or
the MIP approach shown in Equation 4. Where we max-
imise ΣNn=1(V (pn) · zn) and do not consider the pair de-
cision variable xi. The other constraints remain the same.
This gives a combinatorial optimisation problem (knapsack
packing problem) that can be solved using standard mixed-
integer programming (MIP) techniques. Similar methods are
also used in (Pochet and Wolsey 2006; Fitzpatrick and Askin
2005; Matthews, Ramchurn, and Chalkiadakis 2012).

6.2 Team-Centred Approach
Using the values of the player pairs we form teams using the
MIP formula presented in Equation 4. When forming teams
we ensure that all the pairs of players are part of the same
squad and can be selected together. We also consider the po-
sitions of the players so that we pick a team in a reasonable
positional formation. This is represented by position range
constraints.

maximise
x

ΣIi=1(V1(pi) · xi + βV2(pi) · xi)

subject to ΣNn=1(zn) = 11

za = xi, zb = xi

ΣNi=1(gkn · zn) = 1

3 ≤ ΣNn=1(def n · zn) ≤ 5

3 ≤ ΣNn=1(midn · zn) ≤ 5

1 ≤ ΣNn=1(strn · zn) ≤ 3

(4)

where a binary decision variable xi represents the selected
pairs and zn represents whether a player is picked or not.
There is then a number of binary sets for each position (gk,
def , mid and str) containing if a player plays in the corre-
sponding position or not and we aim to maximise the pair
values V1 and V2 in the selected team; β is set to 0.05.2

In more detail, we aim to form a team of N agents using
two binary decision variables: xi which represents if a pair
of agents is selected and zj represents if an agent is picked or
not. The agent decision variables za and zb represent the two
agents in pair i and must equal the decision variable xi. We
aim to maximise the sum of V1(pi) (the value for pi using
the agent pair values we have calculated) and V2(pi) which
represents the interactional alignment (the value of pair pi
which is calculated by Equation 5). This value is weighted
by β which can be learned form the data.

V2(pi) =

k=1∑
K

(V1(pk) · xk){pi∩pk} (5)

Equation 5 represents the sum of all pair values where
there is an overlap with pair pi. By maximising this, it allows
us to increase the strong links between selected pairs while
decreasing the weak links.

7 Evaluation
To evaluate our model for team formation we use a dataset
collected from the past two seasons in the English Premier
League (2017-19) as well as comparing results to the 2018
FIFA World Cup.3 The dataset breaks down each game in
the tournaments into an event-by-event analysis where each
event gives a number of different metrics including: event
type (e.g., pass, shot, tackle etc.), the pitch coordinates of the
event and the event outcome. This type of dataset is industry-
leading in football and used by top professional teams. Thus,
we believe that this is a good, real-world, dataset with the
richness and challenge appropriate to rigorously assess the
value of our model.

7.1 Experiment 1: Player Value Outputs
In this experiments we show the top 10 players/pair of play-
ers which have been calculated using our new metrics. Fig-
ures 3 and 3 shows the top individual players from the past 2
EPL seasons. Following on from this Figures 5 and 6 show
the top pairs of players.

These results show that using our valuations the top play-
ers and pairs are dominated by Manchester City players
(who won the league in both of the leagues we tested in).
This is likely due to the number of players involved in the
build up play which is fundamental to their style of play.
This may suggest that these metrics are best to compare the
players in the same team and play in the same style so could
be used by the teams to help form teams and identify weaker
areas that could be improved in the transfer window.

2This is calculated using a brute force method.
3All data provided by StatsBomb - www.statsbomb.com.
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Figure 3: 2017/18 EPL Individual Players.
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Figure 4: 2018/19 EPL Individual Players.
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Figure 5: 2017/18 EPL Pairs of Players.

7.2 Experiment 2: Performance Comparison to
Human Formed Teams

We evaluate our model using all games from the 2017/18 and
2018/19 EPL Season as well as the 2018 FIFA World Cup.
We compare both the individual player value approach and
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Figure 6: 2018/19 EPL Pairs of Players.

the pairs approach with the teams selected by the human-
expert manager (focusing on both the starting 11 player).
The results are presented in Figure 7 (where error bars rep-
resent a 95% confidence interval).
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Figure 7: Average Difference Between Models and Human
Manager (where lower is better).

This shows that the pair values optimisation method gives
the closest teams to the human experts on average with a dif-
ference at the lowest of 2.3 per game for the starting team.
This suggests that the human managers (either consciously
or sub-consciously) consider the ability of players in the
team to work together as the other methods only consider
individual player values. At an average of 2.3 this could give
managers suggestions of how changes could be made to the
team that may give a better chance of winning the game. It
is worth noting that the performance of the algorithms for
the World Cup is better than over a whole EPL season. This
may be due to the standard rotation which happens over a
whole season, as well as there being less injuries leading to
line-up changes in the World Cup as we do not incorporate
injuries in our formation.



7.3 Experiment 3: Outcome Prediction
Comparison

We see that in Figure 8 there is a positive correlation (p-
value = 0.0011) between the teamwork values and the num-
ber of goals scored by the teams and we see similar re-
sults for the correlation of the team value for other met-
rics. Hence, to evaluate the strength of our methods, we use
the valuations as a predictor of the actual real-world perfor-
mance of the selected teams. We focus on match outcomes
and other team performance metrics.
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Figure 8: Correlation between team pair values and goals.

The results in Figure 9 and Table 1 suggest that the team-
work metric is a more accurate predictor of performance
than individual player values, meaning that the teams with
higher valued pairs are more likely to win the game and have
better performance indicators. This is especially true when
we predict the number of passes that a team will make in a
game as this metric shows the strongest predictor when us-
ing the teamwork values and is a 46% increase on any other
approach.
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Figure 9: Accuracy of Valuation Methods For Outcome Pre-
dictions.

8 Discussion
We focus on forming teams based on individual player val-
ues and pair values. In further work this could be extended
to look at larger sub-sets of player values and form teams
based on those. However, we decided to focus on using the

Model # Individuals Pairs
Shots 4.33 3.74

Goals For 1.00 0.87
Goals Against 1.14 1.06

Passes 105.69 57.07

Table 1: Valuation Methods Root Mean Squared Errors for
Performance Metrics (where lower is better).

pair values to show the teamwork so that we can easily iden-
tify the pairs of players that have a strong impact on team
performance and the outcomes. This also allows us to calcu-
late how the selected players will affect the rest of the team
and therefore the overall teamwork of all players.

We choose to test our team formation methods by com-
paring the outputs to that of a human-expert team manager
who selects the real-world team. Our results show that our
model is able to form teams which are similar to the selec-
tions of human-experts and, that we are able to suggest a
small number of changes that could improve the team. This
comparison also suggests that human-experts consider the
teamwork between players when selecting their teams (this
may be sub-consciously).

Building on our models, in further work we would further
evaluate the predictions of match-outcomes, based on our
team-valuations of a starting 11 team, against other match-
outcome prediction approaches such as (Dixon and Coles
1997; Constantinou, Fenton, and Neil 2012). We would also
extend the models to address how the team formation could
be improved by factoring in an opposition team (in games
such as football this can have a significant difference to how
a team is formed). Our results also suggest that this model
could be applicable across a number of domains and, given
a high-quality dataset, we could further validate the model
performance to see if similar results are found (e.g., in emer-
gency response or data transfers).

9 Conclusion
In this paper we have described a novel approach to team
formation based on interactions between players. Our model
of teamwork considers passage of play event outcomes. We
defined and tested a number of metrics to value the contri-
bution of players and sets of players and show how the value
of teamwork can be learnt from data and then applied to pre-
dict the performance of teams. We tested and validated our
models of valuing agents and forming teams by applying
our models to problems posed by football and using Stats-
Bomb data from the English Premier League and the 2018
FIFA World Cup. We showed that our model is able to pro-
duce similar team selections to an human-expert manager
while also being able to suggest changes to the team. We
also showed how our valuation methods are an effective pre-
dictor of the key team performance metrics in football.
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