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Abstract 
The burgeoning field of sports analytics has led to the proliferation of tools that deliver real-time in-

sights to coaching staff, aiding them in strategic decision-making during games. However, existing sys-

tems focus solely on in-game data, thereby overlooking the benefits of incorporating historical data for 

deeper, contextual insights. In this paper, we introduce StratAlign, a novel system designed to mine 

large-scale historical events data to identify similar ball movement patterns, or "trajectories," in football 

games. We propose a dynamic time warping (DTW)-based distance function that offers robust trajectory 

comparison, and employ a clustering mechanism to efficiently prune the search space. Furthermore, 

StratAlign is built with scalability in mind, using a disk-based hash index to maintain the dataset and sev-

eral memory-eviction strategies to operate within limited resource constraints. We also address the 

challenge of aligning event timestamps with actual video footage through an innovative computer vision 

approach. Our experimental evaluations confirm the system's ability to retrieve relevant ball trajectories 

in significantly less time compared to an in-memory baseline solution, making StratAlign an efficient and 

cost-effective tool for real-time strategic analysis in football games. 

 
1. Introduction 
Recent years have witnessed a great interest in providing teams and analysts with real-time insights dur-

ing games of different sports [1, 2]. In football, these insights include but are not limited to: a chronolog-

ical account of match events, compiled statistics (including passes, dribbles, and shots), and graphical 

presentations of pertinent data through charts and tables as demonstrated in Figure 1, which shows an 

example of one tool [1] that provides such insights. Such tools play an important role in supporting deci-

sion-making for the coaching staff to adapt their in-game strategies according to the changes happening 

during the game with respect to the collected data. Nevertheless, current solutions predominantly focus 

on the assimilation and presentation of in-game data, neglecting the potential value that could be de-

rived from the integration of historical data to facilitate a more profound understanding of the ongoing 

game dynamics. This brings to light an opportunity for the development of tools capable of collocating 

live events with historical data to offer richer insights. To illustrate the potential utility of such an ap-

proach, we present the following example: 
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Example 1: During a match between teams A and B, team A effectively orchestrates a build-up strategy 

initiating from a goal kick and progressing into team B's half. Team B’s coaching staff find it challenging 

to counter this strategy effectively. Unbeknownst to them, a similar strategy was previously deployed by 

a third team, C, in a different competition and season. However, it was successfully thwarted by team D 

employing a specific pressure scheme. Regrettably, due to the constraints in the existing analytical tools 

and the lack of cross-referential data from disparate seasons and competitions, team B's staff remains 

unaware of this potentially effective counterstrategy. A solution leveraging a tool that can swiftly iden-

tify and highlight such historical patterns could significantly enhance the strategic depth and responsive-

ness of coaching teams during live matches. This initiative underscores the necessity for a tool proficient 

in automating the recognition of analogous play patterns across different databases, thereby presenting 

them to coaching staff in real-time to refine decision-making processes during a game. 

 

Building such a tool is a challenging task due to the scale of the mined historical data. The data that can 

be used to help with such a task is called the events data, which can be viewed as logs of all the events 

Figure 1: Example of live analytics shown during games from Statsbomb's IQ Live [1]. On top, a visualiza-

tion of the important events of the game is shown as a timeline. In the middle, important statistics about 

the match events, shots, dribbles and passes are shown in tables. On the bottom, plots of the race charts 

of the two teams and a shot map of one of the teams are shown. 
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happening during any game. Due to the exhaustive nature of the data collected in these logs, a large 

number of events for each game are recorded (typically over 3000 events per game). Collecting data 

over multiple seasons in different competitions can result in storing tens of millions of events that corre-

spond to tens of gigabytes of data [3, 4]. Identifying sequences of events analogous to a particular series 

of interest (for instance, the strategy employed by team A in Example 1) from this vast repository neces-

sitates sifting through millions of historical events, a process that would consume an impractical amount 

of time (on the order of tens of minutes), thereby failing to meet the urgent demands of real-time game 

analysis. This inadequacy in the baseline solution arises fundamentally from two issues: 1. The enormity 

of the historical data entails that the majority of it is stored on disk during the retrieval process, which 

historically remains the slowest storage medium in computing environments, considerably elongating 

the search time [5, 6, 7]. 2. The target sequence bears resemblance to only a fraction of the total search 

space, implying that a large proportion of computational cycles dedicated to finding matches will be ex-

pended on non-congruent sequences. 

 

In this paper, we introduce StratAlign, a system that addresses the aforementioned challenges. Follow-

ing is the outline of StratAlign: 

Ball Trajectories: First, we define what sequences of events can be useful in identifying playing patterns 

in our dataset. Predominantly, these encompass sequences wherein the ball is actively maneuvered on 

the pitch (e.g., we would not be interested in events that log players receiving cards or substitutions). 

These sequences of events can be represented as trajectories of the movement of the ball in one team’s 

possession. Despite filtering, the dataset remains extensive. For example, in our dataset (discussed in 

Section 7), from over 14 million events, we were able to extract over 445 thousand trajectories. 

Trajectories Distance Function: Second, we introduce a distance function that can be used to compare 

any pair of trajectories. While the Euclidean distance could be a customary choice given the pitch's Eu-

clidean space consideration, we argue that the Euclidean distance is not suitable in comparing pairs of 

trajectories for two reasons: 1. The trajectories can be of arbitrary lengths. 2. The Euclidean distance ne-

glects the temporal aspects inherent to the trajectories. To address this, we adopt a dynamic time warp-

ing (DTW) methodology to calculate the distance between any pair of trajectories [8]. This approach can 

stretch or compress sections of the trajectory to align similar patterns that occur at different rates and is 

resilient to noise and outlying points in the trajectories. Figure 2 shows four different examples of an in-

put trajectory (orange) and its most similar trajectory (red) from a dataset of 3715 matches. The figure 

shows how much similar the two trajectories are, revealing similar patterns in progressing the ball down 

the pitch towards the opponent’s half. Although the DTW approach demands higher computational re-

sources compared to the Euclidean metric, StratAlign mitigates this by eliminating most of the search 

space of trajectories to be compared with an input trajectory. 

Dividing and Indexing the Search Space: In the framework of StratAlign, we leverage strategic division 

and indexing of the search space to enhance efficiency by avoiding needless comparisons between an 

input trajectory and others that hold a low likelihood of matching. To demonstrate the need for such 

feature, we ran an experiment where we store trajectories of different number of matches in memory, 

and for an input trajectory, we simply scan all the trajectories to retrieve the most similar one using the 

DTW distance function. We repeat this experiment for different input trajectory lengths and data com-

ing from different number of matches. For any input trajectory length, we repeat the experiment 20 
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times and report the average execution time. The results of this experiment are shown in Figure 3. The 

experiment incorporates five distinct trajectory datasets: (1) Trajectories from Premier League matches 

spanning the 2021-2022 and 2022-2023 seasons, denoted in yellow; (2) Dataset (1) extended with Stats-

bomb open data as of July 20, 20234, represented in orange; (3) Dataset (1) extended with Statsbomb 

open data up to August 19, 20235, marked in blue; (4) A replication of Dataset (3), indicated in green; 

and (5) Dataset (3) amplified threefold, shown in purple.  The figure demonstrates that the execution 

time is influenced by both the length of the input trajectory and the size of the dataset under analysis. 

From the experimental results, it becomes evident that scanning the entirety of large datasets to iden-

tify the trajectory most similar to a given input trajectory is impractical for real-time analytics, where 

 
4 https://github.com/statsbomb/open-data/tree/4f8773dd63606e8d248b77ddab51df8b09150177 
5 https://github.com/statsbomb/open-data/tree/0067cae166a56aa80b2ef18f61e16158d6a7359a 

Figure 2: Four representative trajectories, shown in red, are identified as the most similar to the input 

trajectories, depicted in orange, based on the Dynamic Time Warping (DTW) distance metric. 
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minimal query latency is required. In contrast, for datasets of moderate size, the observed execution 

times extend to several seconds or even minutes. 

In StratAlign, we employ a pre-processing step involving the clustering of trajectories to streamline the 

search process during query time. This entails segregating the dataset into clusters so that, while pro-

cessing a query, we can focus solely on the clusters most resembling the input trajectory, effectively re-

ducing the search space and negating the need to scan all available trajectories. Given the computa-

tional and memory demands of pre-calculating distances between each trajectory pair using the DTW 

distance function, StratAlign adopts a strategy of compressing trajectories into a format that retains es-

sential geometric features. This facilitates efficient clustering while ensuring trajectories with high simi-

larities are grouped together or in adjacent clusters. Upon receipt of an input trajectory, StratAlign iden-

tifies the most congruent clusters by assessing the similarity between the input and each cluster's repre-

sentative elements (e.g., medoids) through the application of the DTW function. Consequently, the en-

suing comparison process is restricted to the trajectories within the selected clusters, a strategy that sig-

nificantly narrows the search space and promotes computational efficiency. 

Ensuring Scalability: StratAlign has been conceptualized with a paramount focus on scalability, accom-

modating user-configured resource limitations to adeptly manage large datasets characteristic of real-

world historical data. Recognizing the impracticability of hosting all trajectories in-memory due to the 

substantial size of authentic historical datasets and the steep costs associated with high resource con-

sumption in contemporary shared cloud frameworks [9, 10, 11], StratAlign navigates this challenge 

through a meticulous allocation of available resources. We take advantage of our partitioning of the 

search space to store in memory only a hash index of the clusters that are stored on disk. We utilize the 

available memory budget to host the index as well as a selected number of clusters according to multi-

Figure 3: The execution time of scanning all the trajectories to find the most similar trajectory to an in-

put trajectory. The x-axis shows the input trajectory length, and the y-axis shows the average execution 

time of 20 runs. 
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ple memory-eviction strategies. This architectural decision assures commendable efficiency for Stra-

tAlign even when operating within a constrained memory environment, therefore offering a viable solu-

tion for real-time analysis without necessitating extensive resources. 

Visualization: In StratAlign, we have elected to present our output through video snippets that delineate 

the trajectory sequences, offering coaching personnel a vivid depiction that encompasses players' move-

ments and positioning across the field during the pertinent sequences. Despite its inherent advantages, 

this approach entails substantial complexities owing to the discrepancies between the game videos' off-

set times and the corresponding clock times documented in the event logs, denoted in minutes and sec-

onds. Given the necessity to maintain a video repository corresponding to the matches the data is col-

lected from, establishing the offset between the event logs' clock time and the initiation point in the 

video file represents a formidable challenge, exacerbated by the magnitude of the endeavor and the 

prohibitive demands of manual annotations for individual video files. Addressing this, StratAlign intro-

duces an innovative solution leveraging machine learning and computer vision frameworks, engineered 

specifically to ascertain temporal offsets from video materials. This technique orchestrates the strengths 

of object detection and optical character recognition (OCR) technology, underpinned by heuristic princi-

ples. At its core, our methodology is focused on the systematic extraction of timestamps embedded 

within scoreboards across a predefined subset of frames. These temporal timestamps are subsequently 

used to compute precise temporal offsets, effectively measuring the temporal difference between 

match time and corresponding frame time. This derived offset enables the precise localization of the 

starting point for a video segment that aligns with the trajectory sequence of specific interest. 

 

Following is the summary of our contributions: 

 To the best of our knowledge, we are the first to develop a scalable solution to address the 

problem of large-scale ball trajectory matching that finds the most similar trajectories to an in-

put trajectory in less than 1 second for long trajectories and in less than half a second for most 

trajectories. 

 We eliminate most of the search space for any input trajectory by partitioning the search space 

of historical trajectories into a large number of smaller clusters such that the number of compar-

isons for an input trajectory is reduced by 91% in the worst case and 98% in the best case with-

out sacrificing the quality of the output. 

 We develop a visualization solution that is based on automatic alignment between the clock 

time in the event logs and when the events occur in the video such that it is possible to retrieve 

the video snippet of any event of interest. 

 We experimentally evaluate our approach and show that with sufficient memory budget, it is 11 

times more efficient on average than an in-memory baseline that stores only the ball trajecto-

ries in memory. We also show that with extremely conservative memory budget StratAlign is 3 

times more efficient on average than the in-memory baseline despite using only 10% of the 

memory size used in the baseline. 
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The rest of the paper is organized as follows: Section 2 presents the overall architecture of StratAlign. 

Section 3 introduces important definitions. Section 4 discusses the trajectory similarity distance func-

tion. Section 5 presents how we organize the search space and how this organization serves our purpose 

of conserving compute and memory resources. Section 6 presents our approach to automatically iden-

tify each video’s offset such that it aligns with the event logs. Section 7 discusses the various experi-

ments that demonstrate the efficiency and scalability of StratAlign. Finally, Section 8 concludes the pa-

per. 

 

2. StratAlign Architecture 
Figure 4 shows the architecture of StratAlign, which does pre-processing in the offline phase, and serves 

the user’s queries in the online phase. In the offline phase, StratAlign starts by scanning all the raw 

event log files to extract all ball trajectories (will be formally defined in Section 3). In order to facilitate 

efficient clustering of these trajectories, StratAlign summarizes each trajectory by storing only a small 

number of features that represent the trajectories. The trajectories are organized into clusters, mark-

edly reducing the total count of groups compared to individual trajectories. Depending on the user's al-

located memory budget, these clusters are stored either in memory or on the disk. A representative tra-

jectory is kept in memory for each cluster (e.g., the medoid), and a pointer to where its cluster is stored 

is also kept (either in memory or on disk). This pair of information (i.e., the representative trajectory and 

the pointer) make up the trajectory index. This organization of the search space is discussed in Section 5. 

In the online phase, an input trajectory is given by the user, StratAlign iterates over the index entries to 

find the representative trajectories that are most similar to the input trajectory, then it retrieves their 

corresponding clusters. The input trajectory is then compared with all the trajectories in the clusters in 

order to find the top-k similar trajectories. Finally, the videos of the most similar trajectories are re-

trieved from the videos database (Section 6 discusses how such videos are managed). 

 

3. Problem Definition 
In this section, we introduce the definitions needed for the discussions in the next sections. 

 

Definition 1 (Attribute): Let 𝐴 be a set of all possible attribute keys and 𝑉 be the set of all possible attrib-

ute values. An attribute 𝑎 ∈  𝐴 is a function 𝑎: 𝐴 →  𝑉 mapping an attribute key to its value. 

 

Definition 2 (Event): Let 𝐸 be the set of all possible events. An event 𝑒 ∈  𝐸 is defined as a subset of 𝐴, 

i.e., 𝑒 ⊆  𝐴. 

 

Definition 3 (Document): Let 𝐷 be the set of all possible documents. A document 𝑑 ∈  𝐷 is defined as an 

ordered sequence of events, i.e., 𝑑  𝑒₁, 𝑒₂, . . . , 𝑒ₙ  for some 𝑛  0, where each 𝑒ᵢ ∈  𝐸 for 1  𝑖 

 𝑛. 
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Definition 4 (Dataset): Let 𝑆 be a dataset. A dataset 𝑆 is defined as a set of documents, i.e., 𝑆 ⊆  𝐷. 

 

Definition 5 (Trajectory): Let us denote an attribute key of interest as 𝑘 ∈  𝐴 and a particular value of 

this key as 𝑣 ∈  𝑉. A trajectory 𝑇 is a maximal ordered sequence of consecutive events 𝑒 , 𝑒 , … , 𝑒  

from any document 𝑑 ∈  𝑆, where 𝑚  0, satisfying the following conditions: 

 

i. Each event 𝑒 , for 1  𝑖  𝑚, contains an attribute 𝑎 ∈ 𝑒  such that 𝑎 𝑘   𝑣. 

Figure 4: The architecture of StratAlign. 
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ii. The trajectory 𝑇 starts with an event 𝑒  in 𝑑 that either is the first event in 𝑑 or follows an 

event 𝑒  where 𝑎 𝑘 𝑣 in 𝑒 . 

iii. The trajectory 𝑇 ends with an event 𝑒  in 𝑑 that either is the last event in 𝑑 or precedes an 

event 𝑒  where 𝑎 𝑘   𝑣 in 𝑒 . 

 

In practice, the attribute used to define the trajectory is the attribute “possession_team”. This definition 

entails that the trajectory is the sequence of events where the ball is in one team’s possession. Based on 

the previous definitions, we formalize the problem of finding the most similar top-k trajectories for a 

given input trajectory. 

 

Definition 6 (Top-k Trajectory Similarity Search):  

Input: 

1. A trajectory 𝑇  which is an ordered sequence of events, defined as 𝑇 𝑒 , 𝑒 , … , 𝑒   

for some 𝑝 0, where each event 𝑒 ∈ 𝐸 for 1 𝑖 𝑝. 

2. A dataset 𝑆 which is defined as a set of documents, where each document 𝑑 ∈ 𝐷 can produce 

one or multiple trajectories as defined earlier. 

3. A positive integer 𝑘 representing the number of desired top similar trajectories. 

4. A distance function 𝑑𝑖𝑠𝑡:𝑇 𝑇 → 𝑅  which measures the similarity between two trajectories. 

The distance function yields non-negative real numbers, with smaller values indicating higher 

similarity. 

Output: 

A set 𝑅 containing the top-k trajectories from 𝑆 most similar to 𝑇 , i.e., 𝑅 𝑇 ,𝑇 , … ,𝑇  such that: 

1. Each trajectory 𝑇  is derived from some document 𝑑 ∈ 𝑆. 

2. The trajectories in 𝑅 are ordered by increasing distance from 𝑇  according to 𝑑𝑖𝑠𝑡. Specifi-

cally, for all 𝑖  𝑗 𝑘, 𝑑𝑖𝑠𝑡 𝑇 ,𝑇 𝑑𝑖𝑠𝑡 𝑇 ,𝑇 . 

In the following section, we discuss the distance function used in StratAlign. 

 

4. Distance Between Trajectories 
While utilizing Euclidean distance is a prevalent practice for determining distances within Euclidean 

spaces, we maintain that for the specific objective of distinguishing the most analogous trajectories to a 

designated input trajectory, this approach is not applicable. This stems from the fact that Euclidean dis-

tance necessitates equal sequence lengths, establishing the distance based on corresponding sequence 

points, yet it remains susceptible to alterations in amplitude and phase shifts. Contrastingly, Dynamic 

Time Warping (DTW) [12, 13, 8] operates without the precondition of sequence alignment, endeavoring 

instead to identify the most optimal alignment across sequences of diverse lengths. This technique 

"warps" the temporal dimension of the sequences to facilitate the most favorable alignment, thus offer-

ing a strategic solution for managing sequences exhibiting disparities in length or those undergoing 

phase disparities owing to time shifts. DTW has proven efficacious in applications like speech and ges-

ture recognition, as well as in time series analysis, areas where phase deviations and time expansions 

are customary phenomena. Following, we discuss the details of calculating the DTW distance between a 

pair of ball trajectories. 
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Initially, we will integrate the notion of location into our definition of trajectory. Following this, we will 

explore the application of DTW in calculating the distance between various trajectories, guided by the 

locations pertinent to their respective events. For each event 𝑒  in a trajectory 𝑇, associate a location 

𝑙 𝑒  from the set 𝐿 of all possible locations. A location can be represented as a point in a two-dimen-

sional space (i.e., 𝑙 𝑒 𝑥,𝑦 ). Now, the trajectory 𝑇 can be seen as a sequence of locations: 𝑇

𝑙 𝑒 , 𝑙 𝑒 , . . . , 𝑙 𝑒 . Dynamic Time Warping (DTW) is a technique used for measuring the similarity 

between two temporal sequences that may vary in speed [12, 13]. For trajectories, this translates to se-

quences of locations. Given two trajectories 𝑇  and 𝑇  with lengths 𝑛 and 𝑚 respectively, the DTW dis-

tance is calculated using a matrix 𝑋 of size 𝑛 𝑚. Let 𝑑𝑖𝑠𝑡 𝑙 𝑒 , 𝑙 𝑒  be the Euclidean distance be-

tween the locations of events 𝑒  from 𝑇  and 𝑒  from 𝑇 . Then, each element 𝑀 𝑖, 𝑗  of the matrix is 

defined recursively as: 

𝑀 𝑖, 𝑗 𝑑𝑖𝑠𝑡 𝑙 𝑒 , 𝑙 𝑒 𝑚𝑖𝑛 𝑀 𝑖 1, 𝑗 ,𝑀 𝑖 1, 𝑗 1 ,𝑀 𝑖, 𝑗 1  

With initial conditions: 

 𝑀 1, 𝑗 ∑ 𝑑𝑖𝑠𝑡 𝑙 𝑒 , 𝑙 𝑒 , 

 𝑀 𝑖, 1 ∑ 𝑑𝑖𝑠𝑡 𝑙 𝑒 , 𝑙 𝑒 , 

 𝑀 1,1 𝑑𝑖𝑠𝑡 𝑙 𝑒 , 𝑙 𝑒  

The value 𝐷 𝑛,𝑚  𝑔ives the DTW distance between the two trajectories 𝑇  and 𝑇 . Algorithm 1 shows 

the steps of calculating the DTW distance between the two input trajectories. The time complexity of 
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this algorithm is 𝑂 𝑛 𝑚 , where 𝑛 is the length of the first trajectory and 𝑚 is the length of the second 

trajectory. 

 

Figure 5 illustrates an application of DTW to determine the distance between two 1-dimensional series, 

denoted as X and Y. The value situated at the bottom right of the depicted matrix indicates the distance 

between the two series, while the shaded elements delineate the warping path, highlighting which 

points in one series are being compared to the points in the other series. This method is adaptable to n-

dimensional series, where the Euclidean distance between corresponding points in each series informs 

the individual matrix element computations. 

 

5. Organizing the Search Space 
Given the scale of historical events data, comparing the input trajectory with all the trajectories ex-

tracted from the events data according to Definition 5 would be inefficient and contradicts with the 

time-critical nature of the problem. Moreover, to carry out such comparisons, the historical trajectories 

need to be stored in memory to avoid inefficient disk access. Again, given the scale of the problem, this 

will be either impractical, or expensive [9, 10, 11]. Motivated by our objective of finding a small number 

of trajectories that match our input trajectory the most, we conclude that most of computations used to 

scan all the trajectories are unnecessary. Thus, our focus pivots towards the structuring of the historical 

trajectory search space in a manner that substantially reduces the necessary computational actions for 

each input scenario. In this section, we discuss the strategy to achieve this through the summarization of 

trajectories, a process which allows for efficient clustering while preserving essential geometric charac-

teristics. Following this, we elaborate on our methodology for indexing the clusters to ensure resource-

efficient access. 

 

5.1. Summarizing and Clustering Trajectories 

The aim behind clustering trajectories in the StratAlign system is not fundamentally to pinpoint mean-

ingful clusters but to efficiently discard trajectories that are considerably divergent from the input tra-

𝑌

𝑋 

Figure 5: An example of how the DTW distance is calculated for two 1-dimensional series. 
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jectory. Hence, our preferred clustering strategy is one that (1) enables quick computations and (2) ar-

ranges the search space into spherical groups, mirroring the Euclidean nature of the trajectories. Consid-

ering employing the Dynamic Time Warping (DTW) distance metric for clustering could logically lead to 

the adoption of k-medoids clustering [14, 15]. Nonetheless, as discussed in Section 4, the time complex-

ity of DTW is 𝑂 𝑛 𝑚 . For the sake of simplicity of discussion, we assume that the average trajectory 

length is 𝐿. Therefore, the time complexity of DTW can be considered 𝑂 𝐿 . Therefore, the time com-

plexity of k-medoids clustering using DTW as the distance function of choice would be 

𝑂 𝑁 . 𝐿 𝑁 . 𝑘  if we precompute a pairwise distance matrix between the trajectories, or 𝑂 𝑁. 𝑘. 𝐿  

if we use an online approach, where 𝑁 is the number of trajectories, 𝑘 is the number of clusters, and 𝐿 is 

the average trajectory size (see the Appendix for details on the analysis of these time complexities). To 

enhance efficiency while maintaining the potential to seamlessly integrate future trajectories with lim-

ited additional burden, we opt for the k-means clustering method, which is acknowledged for its height-

ened efficiency [14, 15]. Facilitating this pathway requires the transformation of trajectories into fixed-

length feature vectors that retain their geometric attributes. 

 

As discussed in Section 4, the trajectory can be defined as a sequence of locations 𝑇

𝑙 𝑒 , 𝑙 𝑒 , . . . , 𝑙 𝑒 , where each location is represented as a point in a two-dimensional space (i.e., 

𝑙 𝑒 𝑥, 𝑦 ). We summarize each trajectory as a fixed-size feature vector with 5 elements: the mean x 

and y coordinates, the direction vector's x and y components, and the total length of the trajectory 

(number of events). Following is an explanation of each component: 

1. Mean Point: The mean point of the trajectory is calculated by averaging the x and y coordinates 

across all the points in the sequence: 

𝑀𝑒𝑎𝑛 ∑ 𝑥 , 

𝑀𝑒𝑎𝑛 ∑ 𝑦 , 

where 𝑝 is the total number of points in the trajectory. 

2. Direction Vector: The overall direction of the trajectory is represented by a vector from the first 

to the last point, computed as: 

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑥 𝑥 , 

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑦 𝑦 . 

3. Trajectory Length: The total length of the trajectory in terms of the number of events (𝑝 . 

 

This representation provides a concise summary that captures some geometric aspects of the trajectory, 

although it might lose some details related to the internal structure, such as curves or repeated patterns 

within the trajectory. In Section 7, we experimentally verify the quality of this method in summarizing 

trajectories. 

 

Given two trajectories,  𝑇  and 𝑇 , defined as sequences of 2-dimensional points: 

𝑇 𝑙 𝑒 , 𝑙 𝑒 , … , 𝑙 𝑒 , 

 

𝑇 𝑙 𝑒 , 𝑙 𝑒 , … , 𝑙 𝑒 , 
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where  𝑙 𝑒 𝑥 ,𝑦 , the comparison between the two trajectories is performed using a combined 

distance measure composed of three distinct components. 

 

1. Mean Points Distance: The mean points of the two trajectories are first calculated: 

Mean ∑ 𝑥 , 

Mean ∑ 𝑦 , 

Mean ∑ 𝑥 , 

Mean ∑ 𝑦 , 

 

and their Euclidean distance is computed: 

𝑑mean Mean Mean Mean Mean . 

 

2. Direction Vectors Distance: The direction vectors for both trajectories are: 

𝑣 𝑥 𝑥 ,𝑦 𝑦 , and 𝑣 𝑥 𝑥 ,𝑦 𝑦 , and their cosine similarity is com-

puted and converted to distance: 

simdirection 𝑣 ⋅ 𝑣 , 

𝑑direction 1 simdirection. 

 

3. Trajectory Length Distance: The lengths of the trajectories, defined as the number of event se-

quences, are compared using the absolute difference: 

𝑑length |𝑝 𝑝 |. 

 

The three distance components are normalized using min-max normalization and the total distance be-

tween the trajectories is computed as the weighted sum of the three components: 

𝑑 𝑇 ,𝑇 𝑑normalized 𝑑direction_normalized 𝑑length_normalized  / 3. 

This combined distance measure takes into account the mean position, overall direction, and length of 

the trajectories, providing a comprehensive comparison that reflects their key geometric characteristics. 

 

Given a set of trajectories 𝒯 T , T , … , T , the objective is to partition them into 𝑘 clusters, such that 

the trajectories within each cluster are more similar to each other in terms of their geometric character-

istics. The similarity between any pair of trajectories 𝑇  and 𝑇  is determined by the distance function 

𝑑 𝑇 ,𝑇  as defined previously. The k-means clustering with the customized distance function is exe-

cuted as follows: 

1. Initialization: We randomly choose 𝑘 initial centroids from 𝒯. Let C , C , … , C  represent the 

centroids. 

2. Assignment: We assign each trajectory 𝑇  to the nearest centroid 𝐶  based on the distance func-

tion d T , C . We form 𝑘 clusters 𝒞 ,𝒞 , … ,𝒞𝓀 , where 𝒞𝒿 T ∣ d T , C

min d T , C . 
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3. Update: We compute the new centroid for each cluster 𝒞𝒿 by taking the mean of the geometric 

characteristics of the trajectories within the cluster: 

Mean
𝒞𝒿
∑ Mean∈𝒞𝒿 , 

Mean
𝒞𝒿
∑ Mean∈𝒞𝒿 , 

𝑣
𝒞𝒿
∑ 𝑣∈𝒞𝒿 , 

𝑣
𝒞𝒿
∑ 𝑣∈𝒞𝒿 , 

𝑝
𝒞𝒿
∑ 𝑝∈𝒞𝒿 , 

where Mean , Mean , 𝑣 , and 𝑝  are the mean points, direction vector, and length of trajec-

tory 𝑇 , respectively. 

 

4. Convergence Check: Steps 2 and 3 are repeated until the centroids no longer change, or some 

predefined criterion (e.g., a maximum number of iterations or a threshold on the change in 

within-cluster sum of squares) is met. 

The final clusters 𝒞 ,𝒞 , … ,𝒞𝓀  represent the partitioning of the trajectories into 𝑘 groups that are ge-

ometrically similar according to the defined distance function. Algorithm 2 shows how the clusters are 

created. 
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5.2. Indexing Clusters and Searching for Most Similar Trajectories 

StratAlign is allocated a specific memory budget for operation. It is presupposed that this memory 

budget is less than the cumulative size of the trajectories within our dataset. For the sake of subsequent 

discussion, we shall momentarily postulate that there exists a sufficient memory budget to accommo-

date all the trajectories (partitioned into clusters as delineated in the previous section). Subsequent to 

this assumption, we will explore the scenario wherein the memory budget is insufficient to cover the 

total size of the trajectories. 

 

Given the clusters obtained through k-means clustering, 𝒞 ,𝒞 , … ,𝒞𝓀 , we select the medoids of each 

cluster C , C , … , C . We build an associative mapping to facilitate the retrieval of clusters similar to a 

given input trajectory, followed by the identification of the top-𝑘 similar trajectories within the retrieved 

cluster. Our solution proceeds as follows (discussed in Algorithm 3): 

1. Memory Address Association: For each cluster 𝒞𝒾, identify the memory address where the clus-

ter's data is stored. 

2. Medoid-Address Mapping: Create an associative structure (e.g., hash map) to store the relation-

ship between the medoids and the corresponding memory addresses. For each cluster 𝒞𝒾, the 

medoid C  is used as the key, and the memory address of 𝒞𝒾 is used as the value. 

3. Similarity Comparison to Medoids: Given an input trajectory 𝑇, we compare it to the 𝑘 medoids 

of the clusters using the Dynamic Time Warping (DTW) distance function. We calculate the DTW 

distances d T, C , d T, C , … , d T, C . 

4. Most Similar Cluster Retrieval: We identify the clusters with the smallest DTW distances to 𝑇. 

Then, we retrieve the memory addresses of the most similar clusters. 

5. Comparison to Trajectories Within Clusters: We access the retrieved clusters and compute the 

DTW distance between 𝑇 and each trajectory within the clusters. We sort the trajectories by the 

DTW distance, and select the top-𝑘 similar trajectories. 
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This multi-level approach significantly reduces the search space by eliminating most of the historical tra-

jectories from the comparison with the input trajectory using the DTW distance. Indeed, we eliminate at 

least 91% of the search space on average using this approach and 98% in the best case. In Section 7, we 

show that this does not come at the expense of the quality of the output. 

 

The previous discussion was based on the assumption that all the trajectories fit in memory. However, 

as discussed earlier, this is not a practical assumption either due to scalability requirements or monetary 

cost. Given a constrained memory budget denoted by "Mem," the necessity to manage large clusters 

𝒞 ,𝒞 , … ,𝒞𝓀  motivates the employment of a caching strategy. Upon a request of a cluster as ex-

plained earlier, it is loaded from the disk to the cache if the cache is not full. If the cache is full, at least 

one cluster that currently resides in the cache must be evicted before loading the requested cluster into 

the cache. Given the immutable nature of the clusters during query time, this means that this cluster’s 

space is simply freed. If the requested cluster is requested again in the future, assuming it was not 

evicted from the cache, it will be accessed from the cache without accessing disk. In StratAlign, we use 

the least recently used policy (LRU), where we maintain a record of the access sequence of clusters. 

Whenever a cluster is accessed (either read from the cache or loaded into the cache), we update its po-

sition in the queue. We then evict the cluster that was accessed least recently when space is required to 

be freed in the cache. The LRU caching strategy is particularly suited to this scenario due to its simplicity 

and effectiveness in handling access patterns where recently used clusters are likely to be accessed 

again in the near future. By prioritizing the retention of recently accessed clusters and evicting those ac-

cessed least recently, this approach minimizes the likelihood of cache misses, providing efficient access 

to the clusters. This strategic use of an LRU-based cache offers a robust solution to the challenge of 

managing large clusters within the constraint of the memory budget "Mem." By carefully calibrating the 

cache size and efficiently implementing the LRU policy, this approach ensures responsive retrieval of 

clusters, enabling effective similarity-based analysis of trajectories without exceeding the available 

memory resources. 

 

 

6. Overcoming Arbitrary Video Offsets 
We introduce a pipeline that leverages machine learning-driven computer vision techniques to auto-

mate the process of determining the temporal offset between timestamps of the events in the events 

dataset and the corresponding recorded footage. An example of such difference is shown in Figure 6. 

Our proposed approach is divided into an offline phase and an online phase. In the offline phase, we 

train a scoreboard detection model and preprocess our video database to associate each video file with 

a JSON file that stores the offset(s) between the video file and the clock time of randomly selected snap-

shots from the video file. In the online phase, given a timestamp of an event of interest, we retrieve the 

accurate video offset of the queried event by employing an automated iterative seeking approach to 

overcome the scenarios where there are disparities in the offset for the same video file and eventually 

return a video snippet that starts at the same time as the input event. 

 



 

17 

6.1. Offline Phase 

Figure 7 shows the steps of the offline phase. Initially, a comprehensive iteration of the video repository 

is undertaken, and each video undergoes a series of operations, resulting in the creation of dedicated 

JSON files for each video instance. Within these JSON files, one or more entries are encoded, containing 

the timestamps extracted from the video frames (specifically, the scoreboard) as the key, paired with 

the corresponding calculated offset values. The aforementioned operations can be encapsulated in 

three fundamental components, each of which are explained in the subsequent sections. 

Scoreboard Detection 

To locate the temporal markers corresponding to football matches within video frames, the initial phase 

entails the recognition of the existing scoreboards in each frame. This task can be effectively accom-

plished through the utilization of an object detection model. The underlying concept of an object detec-

tion model is centered around its ability to learn an encoding from input images and subsequently map 

them to annotated ground truth during the training phase. These annotations consist of coordinates of 

bounding boxes specifying the location of the target object within the image, along with the correspond-

ing class label denoting the object's category. In the deployment phase, this acquired encoding and 

mapping knowledge can be leveraged to predict the coordinates for bounding boxes surrounding each 

instance of our desired objects, should they be present within the frame. In the contemporary landscape 

of computer vision, many architectures have emerged to address object detection tasks. One of the 

most notable among these is the YOLOv8 [16] architecture. Our methodology includes the fine-tuning of 

the pre-trained YOLOv8 model (trained using the COCO dataset [17]) using a bespoke dataset specifically 

developed for this application. A principal obstacle encountered in our work was the scarcity of training 

data compatible with our problem scope. To address this, we manually assembled and annotated a da-

taset, designed to meet the unique requirements of our task. 

Figure 6: Example of difference in between the timestamp of events (top left) and the 

offset of the event starting in the video file (bottom left). 
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The successful implementation of our method is critically dependent on the accurate identification of 

scoreboards. Thus, the dataset compilation required meticulous attention to various factors. One such 

factor is the heterogeneity in scoreboard designs employed globally, characterized by variations in color 

schemes, aspect ratios, typographies, clock positions, and the representation of added time. To accom-

modate these divergent designs, our dataset incorporates images of scoreboards from multiple football 

leagues, tournaments, and international championships. In our work, we annotated data from 32 differ-

ent scoreboard layouts. This diverse inclusion aims to capture a comprehensive array of scoreboard de-

signs, mitigating the risk of model overfitting. The finalized dataset comprises annotated images segre-

gated into two scoreboard categories. The first category is designated for scoreboards that are predomi-

nantly located at one of the upper corners of the video frames. The second category is conceived for 

scoreboards that consume a larger frame area, providing additional information. Figure 8 shows exam-

ples of different snapshots that we annotated to fine-tune YOLOv8. The figure shows examples from 

both classes of scoreboards (smaller scoreboards located in one of the corners of the screen, or bigger 

scoreboards in the bottom center). To enhance the diversity and robustness of our image dataset, we 

employed a sequence of augmentation techniques. Initially, we introduce a random hue adjustment 

spanning a range of 25◦ to 25◦. This is followed by a random saturation modification ranging from 

50% to 50%. Subsequently, we applied a random brightness alteration, ranging from 25% to 

25%. Lastly, we implemented a random exposure adjustment, varying from 10% to 10%. This ap-

proach allows us to enhance the dataset's variety and ensure its effectiveness across different phases of 

model development and evaluation. 

 

The scoreboard detection step is crucial for finding the timestamp and significantly impacts the perfor-

mance and accuracy of the pipeline. Given the resource-intensive nature of OCR models, precise identifi-

Figure 7: The pipeline of the offline phase. 
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cation and isolation of scoreboards significantly reduces the input size of the OCR model [18]. This re-

duction in the input size contributes to the marked enhancement in performance, emphasizing the piv-

otal role of this detection phase in the overall framework. Upon the successful identification of a score-

board within a frame, this localized section of the image is cropped and fed into the subsequent layer. 

 

Reading text from the scoreboard 

Subsequently, the following stage entails the extraction of textual content from the previously identified 

scoreboard region. For this purpose, an Optical Character Recognition (OCR) model is required. Within 

the realm of OCR, numerous methodologies exist, and deep learning techniques excel in terms of accu-

racy, performance, and efficiency. These methods typically entail the integration of an object detection 

model, responsible for locating text within an image, followed by a text recognition model, which en-

Figure 8: Examples of how we annotate our data to fine-tune YOLOv8 to detect scoreboards. 
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codes the output from the text detection model and translates it into its textual equivalent. Various ar-

chitectures have been proposed for OCR, but in this project, we have chosen to utilize EasyOCR [18]. 

This choice is motivated by EasyOCR's remarkable accuracy and efficiency, its adaptability in accommo-

dating different architectures as its submodules, and its compatibility with the other components of our 

pipeline. As the default configuration, EasyOCR employs the CRAFT [19] text detector for the purpose of 

identifying text snippets within an image. CRAFT is particularly renowned for its proficiency in effectively 

detecting text, even when it appears on curved or irregular surfaces. The output generated by the text 

detector submodule is subsequently channeled into the recognition module. This module, also set as the 

default configuration, employs a ResNet [20] feature extractor, followed by several layers of bidirec-

tional Long Short-Term Memory (LSTM) networks. These LSTM layers facilitate the learning of patterns 

within character sequences. Moreover, the recognition module employs the CTC (Connectionist Tem-

poral Classification) loss function, which is specifically designed to handle situations where the align-

ments between sequences are not known in advance. This feature is particularly advantageous for rec-

ognizing text in images with varying layouts and orientations. 

 

Therefore, we leverage EasyOCR to effectively interpret text from the scoreboard. This tool provides us 

with the extracted textual fragments, accompanied by the bounding box coordinates of the text and a 

confidence score. The confidence score serves as a valuable gauge of the result reliability, influencing 

our decision-making process concerning the onward transmission or the omission of the output to sub-

sequent layers. It is noteworthy that while EasyOCR showcases commendable performance, it does not 

attain flawless accuracy. Occasional inaccuracies in character detection, particularly for specific fonts, 

have been observed. However, the consistency of these inaccuracies across the majority of predictions 

facilitates the formulation of heuristic strategies to mitigate their impact. 

 

Heuristic rules 

The concluding layer within the offline phase entails the extraction of timestamps from all textual frag-

ments obtained through the preceding OCR model subprocess, followed by the calculation of temporal 

offsets. To accomplish this, the extracted text fragments go through a specified regular expression pat-

tern designed to distinguish timestamps and convert to milliseconds such that they have the same unit 

as the timestamp in the events files. In order to mitigate potential inaccuracies introduced by the OCR 

model, complementary heuristic rules are incorporated into the original regular expressions. A common 

instance of inaccuracy is relevant to the OCR model's challenge in identifying the colon character sepa-

rating minutes and seconds on the clock. Frequently, the OCR model misrecognizes the colon character 

as a semicolon, dot, pipe, or even the letter "l". Given the certainty that these alternative characters do 

not feature in the clock's representation, their presence signals an erroneous prediction of the colon. 

Consequently, these alternative characters are systematically replaced with the appropriate colon char-

acter. Another notable inaccuracy derives from the OCR model's occasional detection of excessive 

empty spaces between the digits on the clock. Since such gaps have no place within the clock's composi-

tion, the identification of empty spaces signifies a misstep in the OCR model's prediction. These extra 

spaces are therefore removed from the textual data. Although our experimental investigations have yet 
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to reveal additional inaccuracies, the proposed approach remains adaptable to novel inaccuracies. 

Should such disparities occur, modifying the regular expression pattern through the inclusion of addi-

tional heuristic rules is straightforward to implement. 

 

6.2. Online Phase 

The aforementioned offset should theoretically remain constant throughout the video's entirety. How-

ever, empirical observations reveal the potential emergence of discontinuities, attributable to factors 

such as commercial advertisements, variances in TV production, etc. These circumstances introduce the 

potential for deviations in the temporal offset across the footage's duration. One way to address this 

challenge is by exhaustively increasing the number of snapshots processed during the offline phase. 

However, this will result in a significantly slower execution time and excessive use of computing re-

sources to accurately detect what is usually an uncommon disparity. Therefore, we opt to address this 

issue in the online phase while StratAlign is answering a user’s query through the execution of a supple-

mentary operation. The pipeline of this operation is shown in Figure 9. During this supplementary phase, 

the initial offset, determined during the offline phase, serves as the base temporal anchor. Subse-

quently, an accurate offset is determined via an iterative process, explained by the algorithm denoted as 

Algorithm 4. When the offset is first calculated, a sanitary step is applied to check the clock at the calcu-

lated offset. If the clock in the snapshot matches the input event’s timestamp, StratAlign trims the input 

video to output the video snippet starting with the input event. If there exists a discrepancy between 

the clock and the event's timestamp, a fresh offset is determined, coupled with the incorporation of a 

new record in the JSON file aligned with the input video. This iteration continues with successive verifi-

cations until a match is identified. Empirical evaluations confirm the efficiency of this approach in ap-

proximating the accurate temporal offset. Once the refined offset corresponding to the desired 

timestamp is calculated, it is added as an entry into the relevant JSON file, associated with the respec-

tive video file, thereby establishing a reference for subsequent utilization. The trimmed video snippet 

starting at the input event is also output. 

 

 

Figure 9: The pipeline of the online phase. 
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7. Experimental Evaluation 
7.1. Dataset 

In this paper, we use the Statsbomb open data version of August 19, 20236. We also use the 2021-2022 

and the 2022-2023 seasons data from the Premier League, which was provided by Statsbomb. In total, 

our dataset includes a total of over 14 million events, from which we extracted over 445 thousand tra-

jectories. 

 

7.2. Compute Environment 

We run our experiments on a 32-core Intel(R) Xeon(R) CPU @ 2.20GHz computer with 32 GB in RAM and 

1 TB of disk space running Debian GNU/Linux 11. We implemented StratAlign in RUST and Python. It is 

worth noting that all of the experiments in this section are multi-threaded to best utilize the available 

resources in our computing environment. 

In the following experiments, unless otherwise stated, the default set of parameters in StratAlign is as 

follows: We cluster the search space into 500 clusters. We retrieve the 30 clusters whose medoids are 

most similar to the input trajectory for scanning. We assign a memory budget that is sufficient to store 

all the trajectories. 

 

7.3. Efficiency 

In this section, we compare StratAlign to the in-memory scanning approach in terms of execution time. 

We randomly-sample 10% of different lengths trajectories of for testing. We report the average execu-

tion time. Figure 10 shows the results of this experiment. The figure illustrates that StratAlign demon-

strates substantial improvements in execution time compared to the Scanning approach; notably, the 

execution time for the Scanning approach exceeds that of StratAlign by an order of magnitude for tra-

jetories comprising more than 10 events. The error bars in the figure represent the standard deviation 

 
6 https://github.com/statsbomb/open-data/tree/0067cae166a56aa80b2ef18f61e16158d6a7359a 



 

23 

values across multiple experiments conducted for trajectories of identical length. These results provide 

empirical evidence that StratAlign offers more consistent and predictable performance. 

 

In order to assess the efficacy of our indexing methodology within resource-constrained settings, we 

subject StratAlign to an evaluation operating on a restricted memory allocation. Specifically, this 

memory constraint allows only a fraction of the total trajectories to be accommodated in the system's 

memory. The parameters in this experiment are set to their default values. We sample 10% of the tra-

jectories of the median length (25-30) for testing. Figure 11 depicts the outcome of this experimental 

setup, in which StratAlign is evaluated using a range of memory budgets, starting as low as 10% of the 

total size required for storing all trajectories, and incrementing by 10% up to full capacity (100%). The 

results substantiate that even under stringent resource limitations—such as a 10% memory allocation—

StratAlign maintains a latency that comfortably resides within real-time responsiveness. As anticipated, 

an increment in cache size correlates almost linearly with a decrease in the average execution time. 

 

7.4. Quality of Output Trajectories 

To comprehensively assess the quality of our algorithm for finding the most similar trajectory, we use 

the following two metrics: Relative Error, and Top-k Accuracy.  

 

Given an input trajectory 𝑇, let 𝑇  be the true most similar trajectory as determined by Dynamic Time 

Warping (DTW), and let 𝑇  represent the output most similar trajectory found by StratAlign. The Relative 

Error (RERE) is then defined as: Relative Error RE
DTW , DTW , true

DTW , true
. Here, 𝐷𝑇𝑊 𝑇,𝑇  de-

notes the DTW distance between the input trajectory 𝑇 and the approximated trajectory 𝑇 . This metric 

serves to normalize the absolute approximation error in terms of the actual DTW distance to 𝑇 . A 

Figure 10: The execution time to retrieve the most similar trajectory to a given input trajectory for 

StratAlign and the in-memory Scanning approach. 
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Relative Error of 0 would signify a perfect approximation, while values greater than 0 represent varying 

levels of approximation inaccuracies. This metric provides a nuanced evaluation of the approximation 

error by scaling it with the true DTW distance, thereby yielding a more contextual understanding of the 

algorithm's efficacy in approximating the most similar trajectory. 

 

Top-k accuracy is employed to quantify how often the trajectory identified by StratAlign appears within 

the top-k most similar trajectories according to the ground truth, which is established using Dynamic 

Time Warping (DTW) as the distance function. Given an input trajectory 𝑇, the ground truth method 

computes the DTW distances between 𝑇 and all other trajectories in the dataset. These distances are 

then sorted in ascending order to identify the true top-k most similar trajectories to 𝑇. Our approach is 

also run on the same input trajectory 𝑇 to find a trajectory 𝑇 , which is purported to be the most similar 

to 𝑇. The aim is to investigate whether 𝑇  lies within the top-k list of the ground truth. For each input 

trajectory, a Boolean variable is assigned a value of 1 if the trajectory 𝑇  obtained from our approach is 

present within the top-k list obtained from the ground truth method. Otherwise, the variable is assigned 

a value of 0. The Top-k Accuracy is then computed as follows: Top-k Accuracy
Sum of Boolean variables

100. Here, 𝑛 is the total number of input trajectories for which the experiments are run. 

 

Table 1 enumerates the quality metrics for StratAlign across varying trajectory lengths. The results indi-

cate that the relative error remains bounded by 0.05, signifying that the DTW distance between the in-

put and output trajectories deviates by no more than 5% when compared to the distance between the 

input trajectory and its true most similar counterpart from historical data. The table further reveals that, 

in 88% to 98% of the test cases, the output trajectory is among the true top-5 most similar trajectories 

relative to the input. In 96% to almost 100% of the test cases, the output trajectory resides within the 

Figure 11: The effect of changing the cache size to fit only a percentage of the total size 

of trajectories. 
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true top-10 most similar trajectories. These findings substantiate that our approach, while designed for 

efficiency, does not compromise the quality of the output at the expense of enhanced performance. 

 

Table 1: The quality scores for StratAlign for different trajectory lengths. 

Trajectory Length Relative Error Top 5% Accuracy Top 10% Accuracy 

5-10 0.05 97.3 99.19 
10-15 0.03 97.67 99.66 
15-20 0.03 97.16 99.77 
20-25 0.04 95.34 99.51 
25-30 0.04 94.04 99.01 
30-35 0.04 91.24 98.40 
35-40 0.04 89.64 97.57 
40-45 0.04 89.28 97.93 
45-50 0.04 87.88 97.74 

 

 

7.5. Ablation Study 

In this section, we evaluate the effects of changing two parameters in StratAlign: (1) the number of clus-

ters that we group trajectories into, and (2) the number of clusters that are most similar to an input tra-

jectory, which are retrieved for scanning to find the top-k similar trajectories. 

 

In this experiment, we focus on ascertaining the impact of varying the number of clusters utilized to par-

tition the trajectory search space. Operating under the default parameters mentioned in 7.2, while 

changing only the number of clusters created. We also run the experiment using the median trajectory 

length (25-30). Figure 12 presents the implications of modifying the cluster count on both the average 

time taken to identify the most analogous trajectory to a given input and on the top 5/10% accuracy 

metrics. The data reveals an inverse relationship between the number of clusters and the execution 

time; a lower count of clusters results in an elongated execution time. This extension in time can be at-

tributed to the constant number of clusters retrieved for scanning, leading to a larger subset of trajecto-

ries to be scanned. However, this enlarged scope for comparison enhances the likelihood of uncovering 

higher quality matches, as evidenced by the improved accuracy scores. Conversely, escalating the num-

ber of clusters engenders a reduction in both the computational time and the quality metrics. 

 

Next, we evaluate the effect of changing the number of retrieved clusters for scanning. Recall that the 

default setting retrieves 30 clusters. Figure 13 shows the efficiency results of this experiment. As antici-

pated, increasing the number of retrieved clusters results in a larger set of trajectories subjected to com-

parison with the input trajectories via Dynamic Time Warping (DTW) distance, thereby leading to an ex-

tended execution time. Nonetheless, the execution time for the longest considered trajectory length re-

mains below 1.2 seconds, a duration still within the realm of real-time responsiveness.  
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To contextualize the findings of the preceding experiment, we further examine the quality metrics of the 

output as a function of the number of retrieved clusters. Figure 14 shows the average relative error as-

sociated with different quantities of retrieved clusters. As anticipated, there exists an inverse relation-

ship between the number of clusters retrieved and the relative error: fewer clusters result in elevated 

relative error, while more clusters correspond to diminished relative error. Notably, the decrement in 

Figure 13: The execution time of StratAlign using different number of retrieved clusters to perform scan-

ning on. 

Figure 12: The trade-off imposed by different choices of number of clusters to partition the search 

space. 
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relative error when transitioning from 30 to 40 and 50 clusters is less pronounced compared to the tran-

sition from 10 to 20 and 30 clusters. This observation validates our selection of 30 clusters for retrieval, 

as it represents a reasonable trade-off between computational efficiency and reduced relative error. 

Corroborating observations are evident in Figure 15 and Figure 16, which delineate the Top 5% and Top 

10% accuracy metrics, respectively. A direct relationship is observed between the number of retrieved 

clusters and the ensuing accuracy: increasing the number of clusters correspondingly elevates the accu-

racy. However, the difference in accuracy between 30, 40, and 50 clusters is notably less substantial 

than the discrepancy observed when comparing 10 and 20 clusters. 

 

Figure 14: Average relative error of the output of StratAlign for varying trajectory lengths using differ-

ent numbers of retrieved clusters. 

 

Figure 15: The Top 5% accuracy of the output of StratAlign for varying trajectory lengths using differ-

ent numbers of retrieved clusters. 
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7.6. Evaluating Video Offset Detection 

As explained in Section 6.1, we manually annotate our training dataset using two classes: One class re-

fers to the scoreboard commonly found at one of the two top corners of the frames. This variant of 

scoreboard is annotated as “scoreboard” class in our dataset. The other class is intended for the score-

boards that occupy a larger portion of the frame, convey more information, and are typically presented 

at the beginning of each half, or after goals are scored. We referred to this type of scoreboard as “score-

board_big” class in our dataset. After applying the augmentation techniques discussed in Section 6.1, 

our dataset expanded to comprise a total of 1,291 images. These images were then partitioned into dis-

tinct sets for training, validation, and testing, with 1,128 images designated for training, 106 for valida-

tion, and 57 for testing, respectively. 

 

As previously highlighted, the scoreboard detection subprocess represents the core foundation of the 

entire pipeline. While we leveraged an off-the-shelf OCR model and successfully addressed its limita-

tions through the introduction of heuristic rules, it is vital that the input data fed into the OCR model 

maintains a high degree of accuracy. Consequently, we placed significant emphasis on upholding the 

quality of the object detection model and conducted an exhaustive assessment of its performance. Fol-

lowing, we describe the metrics employed to evaluate the quality of the object detection subprocess. 

 

Intersection over Union (IoU) is a commonly employed metric for the evaluation of object detection and 

instance segmentation algorithms. Given a ground-truth bounding box 𝐺 and a predicted bounding box 

𝑃, 𝐼𝑜𝑈 is defined as the ratio of the area of their intersection to the area of their union. Mathematically, 

the IoU can be expressed as follows: 𝐼𝑜𝑈 𝐺,𝑃
| ∩ |

| ∪ |
. Here, |𝐺 ∩ 𝑃| denotes the area of intersection 

between 𝐺 and 𝑃, and |𝐺 ∪ 𝑃| represents the area of union between the two. The intersection area is 

obtained by calculating the overlapping region between 𝐺 and 𝑃, while the union area is computed as 

Figure 16: The Top 10% accuracy of the output of StratAlign for varying trajectory lengths using different 

numbers of retrieved clusters. 
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the sum of the areas of 𝐺 and 𝑃 minus their intersection: |𝐺 ∪ 𝑃| |𝐺| |𝑃| |𝐺 ∩ 𝑃|. The IoU metric 

ranges from 0 to 1, where a value of 0 indicates no overlap and 1 signifies a perfect match between the 

predicted and ground-truth bounding boxes. In many applications, an IoU threshold is specified to deter-

mine whether a prediction is considered a true positive (TP), false positive (FP), or false negative (FN). In 

our experiments, IoU greater than 0.5 is used as a criterion for successful detection. 

 

Precision stands as the ratio of true positive predictions over the combined total of true positive and 

false positive predictions. An elevated precision metric signifies that the model produces fewer errone-

ous positive predictions. Notably, it is important to recognize that increasing the Intersection over Union 

(IoU) threshold concurrently decreases the occurrence of false positive predictions, thereby resulting in 

a higher precision score. Precision is calculated as follows: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 , where 𝑇𝑁 stands for 

true negative. Recall on the other hand, is the ratio of true positive predictions over the summation of 

true positive and false negative predictions. A higher recall metric signifies that the model produces 

fewer erroneous negative predictions. It is essential to acknowledge that increasing the IoU threshold 

can lead to a greater number of false positive predictions and subsequently results in a lower recall 

score. Recall is calculated as follows: 𝑅𝑒𝑐𝑎𝑙𝑙 . 

 

Average Precision (AP) incorporates the trade-off between precision and recall and considers both false 

positives and false negatives. Average precision can be conceptualized as the area under the precision-

recall curve. It is important to note that average precision is computed independently for each of the 

classes (scoreboard and scoreboard_big) within the dataset. The average precision is calculated as fol-

lows: AP 𝑝 𝑟  𝑑𝑟. However, in a discrete setting, this continuous integral is approximated by a 

summation over specific recall values at which the precision changes: AP ∑ Δ𝑟∈ 𝑝 𝑟 , where 𝑝 𝑟  

represents precision at a particular recall level 𝑟, and Δ𝑟 indicates the change in recall. There are two 

commonly utilized variants of average precision: (1) Average precision at IoU 0.5 (AP50), which calcu-

lates the average precision with a specific IoU threshold of 0.5. It assesses the model's ability to make 

predictions with a moderate level of overlap with ground truth bounding boxes, and (2) average preci-

sion at IoU ranging from 0.5 to 0.95 (AP50-95), where the mean of average precisions across a range of 

IoU thresholds, typically from 0.5 to 0.95 is calculated (in intervals of 0.05). AP50-95 serves as a more 

precise evaluation metric, as it indicates the model's capability to predict objects with a high degree of 

overlap (IoU) with the ground truth bounding boxes, across a spectrum of IoU values. A high AP50-95 

value indicates that the model consistently predicts objects with a high IoU score, implying greater accu-

racy in localization and prediction. 

 

Table 2 presents the performance metrics of our scoreboard detection methodology. The first row 

shows the results of detection of the small scoreboard that is usually on one of the corners of the 

screen. The second row shows the results of detection of the big scoreboard that is usually shown at the 

beginning of each period of the game or when goals are scored. The third row shows the average results 

across the two classes. The results indicate exemplary quality in identifying smaller scoreboards, as evi-

denced by near-optimal values for precision, recall, and AP50. Furthermore, the AP50-95 metric sub-

stantiates the robustness of our approach, demonstrating commendable performance even under more 
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stringent IoU thresholds. For the scoreboard_big class, our analysis reveals an elevated precision metric, 

albeit at the expense of reduced recall. This observation is principally attributed to the class's un-

derrepresentation in the training dataset. Despite this limitation, we consider the obtained scores to be 

acceptable. The infrequent occurrence of large scoreboards in practical applications, combined with our 

iterative seek-and-update strategy during the online phase, significantly mitigates the risks associated 

with occasional non-detection of the scoreboard. 

 

Table 2: The quality results of the scoreboard detection model.  

Class Precision Recall AP50 AP50-95 

Scoreboard 
Scoreboard_big 

Both Classes 

0.954 
0.993 
0.973 

1 
0.75 

0.875 

0.977 
0.756 
0.866 

0.831 
0.618 
0.724 

 

Regarding efficiency during the online phase, we run StratAlign using 250 queries. The average latency 

to calculate the offset for an input event is 1.5 seconds (standard deviation is 0.8 seconds). On average, 

it takes StratAlign approximately 400 milliseconds to store the video snippet on disk. 

 

 

8. Conclusion 
This paper presented StratAlign, an innovative system aimed at filling a critical gap in the field of sports 

analytics by incorporating historical events data into real-time strategic analysis for football games. 

Through the use of a dynamic time warping (DTW)-based distance function, StratAlign offers a more nu-

anced and robust mechanism for trajectory comparison. The system's clustering approach effectively 

prunes the search space, optimizing computational performance. Additionally, StratAlign has been de-

signed with scalability as a core consideration. Utilizing a disk-based hash index and memory-eviction 

strategies, the system efficiently operates within restricted computational resources. We have also ad-

dressed the non-trivial problem of timestamp alignment with actual video footage, employing computer 

vision techniques to resolve this challenge. Our experimental evaluations substantiate StratAlign's effi-

ciency, demonstrating that it is capable of retrieving relevant ball trajectories in a substantially shorter 

time frame as compared to existing baseline solution. This makes StratAlign not only an effective tool 

but also a cost-efficient option for real-time strategic decision-making in football games. In the future, 

we are exploring the possibility of incorporating the players situational variables to provide even more 

contextually enriched insights for strategic planning. Moreover, we are also investigating how we can 

extend StratAlign's capabilities to other sports.  
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Appendix 
The Time Complexities of the k-medoids Approaches 

With Pairwise Distance Matrix: 

1. Initialization: Select 𝑘 data points as initial medoids. 

2. Calculate Pairwise Distance Matrix: 

Compute the distance between all pairs of trajectories, resulting in an 𝑁 𝑁 matrix. 

Time complexity: 𝑂 𝑁 . 𝐿  , where 𝑁 is the number of trajectories, and 𝐿 is the average length of the 

trajectories. 

3. Cluster Assignment: 

Assign each trajectory to the nearest medoid using the precomputed distance matrix. 

Time complexity: 𝑂 𝑁. 𝑘 . 

4. Medoid Update: 

For each cluster, test each data point to see if it would be a better medoid. 

Compute the total distance to all other points in the cluster using the distance matrix. 

Replace the medoid if a better one is found. 

Time complexity: 𝑂 𝑁 . 𝑘 . 

5. Convergence Check: Repeat steps 3 and 4 until the medoids do not change, or the change is be-

low a threshold. 

Overall Complexity: 𝑂 𝑁 . 𝐿 𝑁 . 𝑘  for one iteration. 

 

Without Pairwise Distance Matrix (Online Approach): 

1. Initialization: Select 𝑘 data points randomly or using some heuristic as initial medoids. 

2. Sequential Processing:  

a. Calculate Distance to Medoids: Compute the distance from the current trajectory to 

each medoid (using, e.g., DTW). Time complexity: 𝑂 𝑘. 𝐿 .  

b. Assign Cluster: Assign the current trajectory to the nearest medoid.  

c. Check for Medoid Update: Test if the current trajectory is a better medoid for its cluster 

by maintaining a running sum of distances.  

d. Update Medoid if Necessary: Replace the current cluster's medoid if a better one is 

found.  

e. Repeat: Continue with the next trajectory. 

Overall time complexity for this step: 𝑂 𝑁. 𝑘. 𝐿 . 

3. Convergence Check: You may run through the dataset multiple times or include logic to detect if 

changes to medoids are below a threshold. 

Overall Complexity: 𝑂 𝑁. 𝑘. 𝐿  for each pass through the data. 

 

The precomputed matrix approach may offer some efficiency in subsequent iterations of the algorithm 

since the distances are already computed for smaller datasets. However, for larger datasets, this ad-

vantage is often outweighed by the initial computation and storage costs. In fact, using our dataset, we 
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extract 445 thousand trajectories, approximately. Assuming the distance between any pair of trajecto-

ries is stored in a 32-bit float, this would require 445𝐾 32 bytes of storage space, or 6 TB. 

 


