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Introduction
Preparing for a soccer match requires an extensive analysis of the opposing team’s
playing style, tendencies and tactics. Such analysis enables coaches and analysts to
formulate well-informed game plans and tactical adjustments, aiming to exploit the
opponent's weaknesses and capitalize on their strengths. Previous studies have therefore
explored techniques to measure various offensive and defensive factors that delineate a
team’s playing style such as ball possession �1�, passing tendencies �2�, pressing behavior
�3�, team formations �4�, attacking patterns �5�, etc.

However, contextual variables such as match venue, opposition strength and game state
were previously found to be associated with changes in teams’ dynamics within and
between matches �6���10�. Typically, methods for tactical analysis do not take these
contextual variables into account and aggregate the analysis over an entire game or
season �11�, �12�. Alternatively, they perform separate analyses for small epochs of a
game �13�, which reduces sample sizes. Our research aims to provide a broader
perspective and more comprehensive understanding of the influence of game context on
a team’s tactical behaviors, decision-making, and overall effectiveness by integrating
contextual variables in the analysis.

Specifically, in this study, we will analyze the effect of the game state (i.e., time
remaining, scoreline and venue) on the passing decisions that players make in soccer.
Here, passing decisions serve as a proxy towards team style and, more pertinently, how
that style changes depending upon the game state. Indeed, previous research has shown
that losing or drawing teams prefer a direct playing style (characterized by instances of
play where teams attempt to move the ball quickly toward the opposition’s goal through
the use of riskier direct or long passes), whereas winning teams prefer shorter passing
sequences �14���16�.

Nonetheless, these analyses offer only a limited breakdown of pass types and the
specific phase of play in which they are executed. We hypothesize that the situational
context manifests itself differently across different phases of play (e.g., build-up vs. final
third) and in terms of the types of pass options available to a player (e.g., opportunities
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for through balls vs. crosses). Therefore, a more detailed framework should be provided
for analyzing context-dependent styles of play.

Our approach is two-fold. First, we extend the SoccerMap architecture �17� by introducing
limited game state information into the model training process. This game state
information is reshaped into surfaces, which are used as additional channels for the
prediction architecture. The spatial dissimilarity of the predicted passing distribution
across different game states provides an interpretable visualization of how game state
affects passing tendencies in specific situations. Second, we propose an
encoder-decoder architecture for isolating the effect of game state factors on a player’s
pass decision. The resulting latent space represents the learned relationship between
game state factors and pass decisions, providing insights into how teams are expected to
react to specific game state changes.

The main contributions of this work are the following:
1. We show how the SoccerMap architecture can be modified to predict passing

tendencies in a given situational context.
2. We present an encoder-decoder architecture that can generate a compact

embedding for describing how a player’s pass selection decision was affected by
the situational context.

3. We show how these embeddings can be used to get a better insight into a team’s
playing style and how they tend to vary their game plan based on the situational
context.

Modeling the Passing Dynamics of a Soccer Team
In this paper, we are interested in the problem of automatically inferring how a team
adjusts its in-possession playing style to the game context. Our approach hinges on
analyzing passing dynamics as a proxy for a team's in-possession playing style. Indeed,
the typical passing choices made by players on a team are closely linked to the team's
playing style. For example, the preference for short, quick passes over long, probing ones
can provide insights into whether a team prefers a possession-based strategy or a more
direct, counter-attacking approach. Similarly, the distribution of passes between wide and
central areas of the pitch can reveal the extent to which a team exploits the flanks or opts
for a more centrally-focused buildup.

In this section, we explain how a team’s passing dynamics and the game context can be
modeled independently based on tactical event stream data. Then, in the next sections,
we discuss two complementary approaches for integrating the analysis of passing
dynamics and game context.
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Data Description
This work uses StatsBomb 360 tactical event stream data. In this type of data, each
match is described by the regular human-annotated event stream data, augmented with
partial spatial context extracted from broadcast video. Namely, each event comes with a
snapshot providing the location and relationship to the ball carrier (i.e., teammate or
opponent) of all the players appearing in the broadcast video at the time of the event. The
annotated events include passes, dribbles and shots observed during the match. Each
event is characterized by its time of occurrence in the match, the origin and destination
location, the player executing the action, the outcome of the action, and the body part
used to execute the action. We convert the original event stream to its SPADL
representation �18�.

We focus exclusively on passes to analyze teams’ playing styles. Additionally, we filter out
passes not performed by foot, passes from dead-ball situations (i.e., corners, free-kicks,
goal-kicks, kick-offs, and throw-ins), and passes for which the origin or destination
location falls outside the visible area of the 360 snapshot.

Applying the aforementioned filters, we construct a training dataset comprising 162,991
passes from the 2021/22 Premier League, and 164,423 passes from the 2022/23 Premier
League. These two datasets only contain games involving a team that finished in the
top-10 of the league in the considered season. Additionally, a dataset of 19,544 passes
extracted from EURO2020 data has been set aside for the purpose of evaluating the
models and developing the use cases.

Modeling Passing Dynamics
Setting aside individual player decision-making tendencies and team-specific tactics, we
posit that passing dynamics in soccer are primarily shaped by two key factors:

1. Phase of play: This encompasses distinctions such as build-up play versus chance
creation, which is closely tied to the location of the ball.

2. Available passing options: This involves assessing opportunities for various types
of passes, such as through balls or crosses, and is intricately linked to the
positioning of other players on the field.

Existing pass selection models use the ball’s location and possible passing options to
predict the destination �17� or recipient �19�, �20� of a pass. Consequently, these models
effectively capture the passing dynamics of a generic team in a generic match context.

We use the SoccerMap model �17�, which is a modern deep convolutional neural network
architecture specifically designed to analyze spatiotemporal data in soccer. As the input
of the architecture, we use a 9-channel spatiotemporal representation constructed from
the 360 snapshot of the relevant pass and its two preceding actions �21�:
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1. Sparse matrix with locations of the attacking team.
2. Sparse matrix with locations of the defending team.
3. Dense matrix with distance to the ball for every location.
4. Dense matrix with distance to the goal of the defending team for every location.
5. Dense matrix with the sine of the angle between every location and the ball.
6. Dense matrix with the cosine of the angle between every location and the ball.
7. Dense matrix between every location and the goal.
8. Matrix with the x component of the velocity vector of the ball, derived from the

timestamps and ball location in the event data during the two preceding actions
9. The same matrix with the y component of the velocity vector.

These channels are processed by convolutional layers that create a feature hierarchy with
scales of 1x, 1/2x, and 1/4x �Figure 1�. These different scaled spatial-aware features are
upsampled nonlinearly and merged using fusion layers. Finally, a sigmoid activation layer
model estimates the probability of passing to each position on the pitch. The model is
trained using the log-loss. The cell corresponding to the destination of the pass is
selected by multiplying the probability surface with a binary masked matrix.

Figure 1. We use the SoccerMap deep learning architecture to predict the likelihood of each
possible pass. The game state is represented as a tensor in which each channel contains
low-level information extracted from the 360 snapshot. Through a combination of convolutional
layers at different resolutions, the network can capture relevant information at both local and
global levels, producing location-wise predictions that are spatially aware. Figure taken from
�17�.
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Game State Factors
We analyze three factors that affect team dynamics during a soccer match. In the
following, we refer to these three factors as game state factors.

1. Venue. Teams often adapt their playing style based on whether they are playing at
home or away. When playing in the comfort of their home stadium, teams
frequently exhibit a more assertive and attacking style of play. Conversely, when
facing an away fixture, teams often adopt a more cautious and strategic approach
�22�.
We encode the venue as a binary variable, indicating whether the team in
possession plays at home or away.

2. Scoreline. The scoreline of the match plays a role in shaping teams’ risk-aversive
behavior. When a team is losing a game, they may take more risks to create
scoring opportunities. On the other hand, when a team is winning, they often
become more focused on defending their lead. Teams tend to prioritize maintaining
their advantage, often adopting a "parking the bus" strategy to ensure defensive
solidity �23�.
We categorize the scoreline into six distinct groups: ��3, �2, �1, draw, �1, �2, �3.

3. Time remaining. The remaining time on the clock also affects teams’ dynamics.
When time is running out, teams may adopt a more aggressive and direct style of
play. They might employ tactics such as quick counters, long balls, and all-out
attacks in an attempt to score goals rapidly. Conversely, if a team holds a
comfortable lead late in the match, they may prioritize ball retention and
time-wasting strategies to run down the clock and protect their advantage �24�.
We represent the remaining time as a discrete variable by dividing the game into
quarters and subdividing the last quarter into 5-minute intervals.

We use a one-hot encoding to represent these three game state factors as a
16-dimensional vector �1 bit indicating whether the in-possession team plays at home or
away, 7 bits for the scoreline, and 8 bits for the time remaining).

Predicting how the game state will impact a specific pass decision
SoccerMap �17� provides us with a powerful tool for conducting a fine-grained analysis of
generic passing tendencies in various game situations. However, a team strongly adapts
its passing tendencies, depending upon the game state and the team’s corresponding
objectives. Unfortunately, the original SoccerMap architecture lacks the capacity to
capture the contextual playing styles of a team. It consistently generates the same
probability surface for a given spatiotemporal snapshot of the game, irrespective of the
team in ball possession and the game state.

Therefore, in this section, our goal is to incorporate the team identity and aforementioned
game state factors into the SoccerMap input to obtain probability surfaces that are aware
of the actual game situation.
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Adapting SoccerMap to Include Game State and Team Identity
This requires deciding (i) how to input the game state into the model and (ii) how to adapt
the structure of the network to integrate the spatiotemporal information and the game
state.

In our approach, we transform the original SoccerMap input by concatenating the game
state and team identity to the input channels �Figure 2�. We use the aforementioned
one-hot encoding of the game state and concatenate a 23-dimensional1 one-hot
encoding of the team that executes the pass. The game state and team information is
subsequently compressed to a 21-dimensional vector using a fully connected layer.
However, this dimensionality does not align with the sizes of the input channels
representing the pitch. Therefore, we treat each variable in this vector as a 68�104
channel and replicate its value across each cell. Subsequently, we concatenate this matrix
with the original SoccerMap input matrix, creating a 30�68�104 matrix.

With this approach, we can embed categorical information into the spatiotemporal input
independently of the spatial location. The intuition behind this idea is that the information
provided by the game state remains consistent across all pitch coordinates. We then
apply 1�1 convolutional filters to blend the original SoccerMap information with the game
state and reduce the dimensions of the input channels to match the original 9�68�104
SoccerMap input size.

Our method of integrating additional information into the SoccerMap differs from the
approach employed by Pleuler �25�. That work used a parallel network to encode the
individual decision-making tendencies of players into latent space embeddings. These
embeddings are subsequently reshaped into surfaces and used as additional channels
within the prediction architecture. Reshaping those embeddings, concatenating them with
spatial input, and using convolutional layers to process them has two problems. Firstly,
reshaping the embeddings and concatenating them with a matrix with spatial information
creates a spatial behavior for this embedding which does not exist naturally. Secondly,
processing it with convolutional networks with a kernel size larger than one infuses a
locality for player information which is again not correct. In contrast, our approach
integrates information into all locations of the pitch, which seems more appropriate for the
game state because it intuitively has a global influence. We concatenate the same
embedding with each location and use 1�1 convolutions to integrate it with the spatial
data without considering neighboring locations.

1 23 teams appear in the 2021/22 and 2022/23 Premier League seasons
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Figure 2. Illustration of our approach for adding the game state and team identity to the
SoccerMap input.

Experiment and Results
We used data from both the 2021/22 and 2022/2023 Premier League seasons to train the
model. To facilitate model selection, we designated a random 20% subset of the passes
as a validation set.

We train both the baseline SoccerMap model and the modified SoccerMap model using a
learning rate of 1e-6 and a batch size of 32. We use early-stopping with patience set to 10
epochs and a delta of 1e−5. The maximum number of epochs is set to 500.

Table 1 compares the performance and model properties of the vanilla SoccerMap
architecture and our modified version. The modified version performs better both in
log-loss and Brier score, which indicates that the addition of team identity and game
state context allows the model to make more accurate predictions. Also, the number of
parameters increases only marginally due to our 1�1 convolutional approach which does
not need as many parameters as fully connected layers.

Table 1. Results for the benchmark models and the modified team- and game state-aware
SoccerMap model.

Model Log-loss Brier Score Nb. of
parameters

SoccerMap 5.989 0.988 271,000

SoccerMap + Game state + Team ID 5.961 0.987 275,000
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Practical Applications
Our modified SoccerMap allows us to visualize how a team will respond to different game
states. We simply have to select a particular situation (i.e., the location of players and the
ball), and we can then alter the game state parameters to produce different pass
probability surfaces. To illustrate this, we select two passes from the dataset. We then
alter one component of the game state while holding the others constant. To generate
these, we sampled passes from EURO2020 data. This has the advantage of being
separate from the data used for training (i.e., less risk of misleading results due to
overfitting) but the disadvantage is that the lineup of players may be less typical of the
considered teams.

First, we investigate how the time remaining in a match affects Liverpool’s build-up when
they play at home and the score is tied. Figure 3 shows the difference in pass probability
surfaces between the 30�45 minutes and the 85�90 for a specific situation. Liverpool
would be more likely to take a more cautious approach near the end of the first half. With
ample time to score a goal in the second half, they are more inclined to opt for a
backward pass to one of their central defenders. In contrast, when the score remains tied
near the end of the game, a shift in the probability mass occurs towards a more direct
offensive passing strategy. There is a greater likelihood of Liverpool choosing to pass the
ball directly to one of their fullbacks or offensive midfielders.
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Figure 3. When playing at home with the score being tied in the last five minutes of the game,
Liverpool adopts a more direct build-up strategy.

Second, we explore the influence of the venue on Arsenal’s passing dynamics between
minutes 15�30 in a tied game. Figure 4 shows the difference in pass probability surfaces
between home and away. When playing away, Arsenal has a stronger preference for a
patient build-up through the center. However, at their home ground, they are more likely
to directly play the ball to the flanks.

Figure 4. When playing away, Arsenal has a greater preference for a patient build-up through the
center. At their home ground, they are more likely to directly seek the flanks. The other game
state factors are fixed to the score being tied in the second quarter of the game.

Describing how the game state alters a team’s passing strategy
While our modified SoccerMap architecture allows us to investigate individual situations, it
would also be informative to take a more holistic view to summarize how teams typically
respond to changes in the game state. To address this problem, we employ a neural
network-based encoder-decoder architecture. Given the SoccerMap probability surface
for a specific situation, the actual passing choice (the so-called mask), and the team that
performed the pass, the model will predict the corresponding game state. The encoder
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will learn a small, latent representation that captures how teams react to different game
states.

A Game State Encoder-Decoder
A key design decision in an encoder-decoder approach is choosing the appropriate
prediction task. We consider two possibilities. First, we train a model that jointly predicts
all three components of the game state. This has the advantage of capturing synergies
among these components. However, it makes the prediction task more difficult and
training the network more complicated, which we will discuss below. Second, we train
separate models to predict each component of the game state. This simplifies learning at
the expense of missing any interactions that arise among the time remaining, goal
difference and home/away. Regardless of the approach, we use the same encoder model.
However, each task has a slightly different decoder.

The encoder compresses the probability surfaces, mask, and team information into a
16-dimensional latent space. It has two parts: a Convolutional Encoder and a Combined
Encoder. The first applies 3 convolutional layers to the 2D inputs (the probability surface
for the pass-selection and its corresponding mask) to obtain a flattened representation.
This representation is then concatenated with the team information and fed into the
second encoder with the purpose of integrating the pass and team information. This
Combined Encoder uses three fully connected layers to compress the data into the
16-dimensional latent space.

First, the decoder expands the latent vector to a 256-dimensional vector by using three
fully connected layers. Second, we employ a predictor network to predict the game state.
The predictor network depends on the considered setting. When jointly predicting all
elements of the game state, the model consists of three parallel networks, one for each
component of the game state, each containing 3 fully connected layers. In the separate
setting, the predictor network simply has 3 fully connected layers.

To train the network, we use the following loss functions: binary cross entropy for
home/away, categorical cross entropy for the time period, and categorical cross entropy
for the goal difference. There are two key challenges here:

1. Certain game states, namely those involving a goal difference of zero, occur way
more often. We compare two ways to approach this. First, for each game state, we
sample a maximum of 2000 passes (if there are �2000 passes then all are
selected). Second, we inversely weigh each game state by its frequency. This has
the effect of making it seem that each game state occurs the same number of
times in the data.

2. The loss functions are on different scales, which is only relevant when training the
joint model. If not accounted for, the model may simply focus on improving the
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predictions for the component of the loss that has the largest value. We address
this by normalizing the losses and assigning an equal weight to each component.

Experiment and Results
To train the encoder-decoder model, we first train SoccerMap to obtain probability
surfaces that will be used as one of the inputs for the encoder. For training both the
vanilla SoccerMap and the encoder-decoder model, we used the PyTorch Lightning
framework with the adaptive moment estimation �ADAM� algorithm for optimizing the
weights. For the vanilla SoccerMap �17�, we use a learning rate of 5e-6 and a batch size of
32. For the encoder-decoder model, we use a learning rate of 1e-6 and a batch size of 32.

For training the SoccerMap model and the encoder-decoder model itself, we used
2021/22 Premier League data. We use data from the 2022/23 Premier League for
evaluating the encoder-decoder model and computing the quantitative results. Again, we
split 20% of the training data for validation.

Table 2 shows the accuracy for predicting each of the three game-state components for
both the joint model and the separate models. We also report the accuracy of random
guessing as a baseline. Overall, we can see that training a separate encoder-decoder to
predict each component of the game state has better predictive performance, except for
on home vs. away. The joint model is even worse than random guessing for two of the
tasks. This happens because the joint prediction task is too complicated and therefore
the model is not able to infer the actual game state from the teams’ passes.

Table 2. Accuracy for the three game state components for the model with separate prediction
tasks and the joint model.

Model Accuracy
home/away

Accuracy goal
difference

Accuracy
remaining time

Separate model 0,5056 0,1291 0,1824

Joint model 0.5122 0,1027 0,1081

Random guess 0.5 0.143 0.125

Moreover, we evaluate our design choices to cope with the imbalance in the dataset. To
verify the effectiveness of our approach, we compare it with two other models: the first
samples the passes without weighting them according to their frequency, while the latter
weighs each sample but the training is done using the whole dataset. Table 3 shows the
accuracy of the three models on three prediction tasks. Overall, the model with only
sampling has the highest average accuracy. This probably happens because rare game
states are so infrequent that they have a high weight, meaning that a small improvement
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in predicting their value can have a large effect on improving the loss function. Thus the
model focuses on these at the expense of the more frequent ones.

Table 3. Log-loss for the three game-state components for the model with separate prediction
tasks and the joint model.

Model Accuracy
home/away

Accuracy goal
difference

Accuracy
remaining time

Separate model +
sampling +
weighting

0,5056 0,1291 0,1824

Separate model +
sampling

0,5108 0,3066 0,1421

Separate model +
weighting

0,5085 0,0916 0,1421

Practical Applications
The latent space of the encoder-decoder model effectively captures the relationship
between a team’s passing decision (model input) and the game state (model output) for
each pass in the dataset. Hence, we can gain insight into how teams adapt their passing
strategy to specific game state changes by analyzing how a team’s vectors in this latent
space change according to the various game state factors.

Since each pass results in one latent vector �Figure 5�, we need a way to aggregate the
latent vectors to be able to derive insights about a team’s contextual playing styles.
Therefore, for a specific game state, we retrieve all the latent vectors for passes
performed in that game state and average them. This mean vector can be viewed as the
team’s typical dynamic in that game state. By comparing the distance among the teams’
mean vectors in the latent space we can analyze/discuss how different or similar teams’
passing dynamics are across particular game states.
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Figure 5. A 2D projection of the latent vectors using t-SNE. Each dot corresponds to (the latent
vector of) a pass and is colored according to the team that executed the pass. The passes of the
same team are clustered together, indicating that the latent space captures team-specific
passing dynamics.

We first analyze the influence of remaining time on team strategies for all 20 teams in the
2022/23 Premier League season. Specifically, we aim to quantify how much each team
tends to change its playing style between the first and the last quarter of a match. To
achieve this, we filter the passes that belong to either of the two analyzed quarters and
subsequently average all the latent vectors per team and per quarter. The difference
between each team’s two resulting vectors reveals how much the teams vary their playing
style between the start and the end of a game. These differences are visualized in Figure
6. Fulham has the lowest difference between the two considered time periods, showing
that its playing style is very consistent throughout the entire game. On the other hand,
Bournemouth and Liverpool are the teams that are most influenced by the remaining time.
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Figure 6. The degree to which each team varied their playing style between the first and last
quarter of a match in the 2022/23 Premier League season.

Second, we analyze the extent to which team strategies are affected by the match venue
�Table 7�. Here, we compute the mean latent vectors for each team when playing at home
and when playing away. Aston Villa is the least dependent on home/away conditions.
Remarkably, Liverpool and Bournemouth are again among the teams for which the
passing tendencies are most affected.

Figure 7. The degree to which each team varied their playing style when playing at home vs
away in the 2022/23 Premier League season.

Conclusions
Both of the proposed methods clearly showed that a team’s playing style can be strongly
affected by the game state. The modified SoccerMap model makes it possible to observe
this effect in a specific context. We showed that it is possible to estimate how a certain
team will adapt their decision for a specific pass as a function of the game state. This can
be especially useful for coaches and players to adapt their play and actions in different
states of a game. The Encoder-Decoder model proposes a method to describe how the
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game state will alter the team passing strategy, which is a useful tool for both the
technical team and the media.

For the future, we need to address two main issues that made isolating the effect of game
state a hard problem. Firstly, the imbalance is a huge problem that we tried to address by
sampling or weighting the loss. Also learning from joint loss was a harder problem so it is
better to learn the effect of each game state factor separately which misses interactions.
A method that takes account of interactions without complexing the learning task can
increase the accuracy of the model. Finally, the signal in the data is too sparse. This may
be complicated by the fact that we consider a fine-grained resolution of the field. It is
possible that taking a higher-level or more qualitative approach may be more suitable.
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