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Introduction
Over the last two decades, the sports industry has incorporated data analytical methods
in their daily methodologies as a competitive advantage. The systematic usage of
data-driven methods enabled sports teams to retrieve objective performance analysis,
improve understanding of the sports discipline and refine knowledge extraction. In
European football (soccer), the exponential growth of data volume and detail motivated
the introduction of more sophisticated machine learning models to handle the complexity
of the analysis �1�. Such data empower a completely new reconstruction of the sports
game beyond the traditional performance indicators and match sheet data �2�. Among
these data sources, event data rose as one of the most widely used sources of
information reporting at high granularity all on-ball actions occurring during a game. This
data source is often set side by side with optical tracking data, a data source including all
the players and the ball position at high frequency during the game �3�. The ideal scenario
would consist of synchronizing the data streams to gain the best of both data contexts.

Hewitt et al. �2016� �4� define team playing style as “the characteristic playing pattern
demonstrated by a team during games”. This inherent yet unknown aspect of football
teams is essential in understanding the analytical outcomes. For instance, when
assessing a potential new player for a team, it is desirable to know the mechanisms that
the team intended to perform and how this player contributed to this team's strategy. On
some other occasions, when approaching a certain opponent, some of the common
questions the analyst team faces at a high level are 'How are they usually trying to
generate chances?', 'What is their ball recovery strategy?'. However, for obvious reasons,
this team strategy is kept private as it belongs to the coaching staff and is highly valuable
for the team's success.

Despite the media presenting football style at a high level on how a team esthetically
looks or simplifying it to aggregated metrics1, tactics in football are divided into various
levels and categories. Depending on the game situation, the team undergoes a defined
process involving actions and actors (i.e., the players). For instance, a team develops
different processes when building the attack or recovering the ball �5�. Additionally, an

1 https://theanalyst.com/eu/2022/01/premier-league-how-does-each-team-play/, accessed
11/11/2022
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attacking process can pursue different objectives or endeavors, such as reaching a
certain zone in the field, conserving a dangerous possession, or directly attacking the
opponent's penalty box at a fast tempo. All these processes are part of the team's
guidelines, automatisms, and voluntarily executed actions from the players that, if
repeated frequently, construct the team strategy.

The use of advanced data sources in the realm of football analytics has mainly focused on
the evaluation of actions and players. Nowadays, several methods allow for an objective
measure of the impact of each action performed in the field, for instance, with
probabilistic classification approaches toward reaching a certain reward (i.e., scoring
opportunity with the widely presented Expected Goals metric). However, these
approaches are usually centered on probabilistic predictions and game-state measuring
but do not directly focus on identifying team-playing strategies. Moreover, these
approaches usually focus on success rather than systematic play patterns. This paper
explores a different approach to discovering and modeling team tactics of play by using
event data as a trace of such a strategy. Indeed, assuming teams have a set of principles
of play defined before a match that describes how the team should unfold in certain game
situations, event data can be considered the footprint or trace of such a system.
Therefore, the presented methodology uses the possessions encoded in event data as
traces of the team strategy. These event traces are then analyzed to identify common
structures in which actions are taken towards a certain goal.

The end goal of this paper is to present a process-aware analysis of event data to
discover team playing strategy. We use Process Discovery �6� techniques to retrieve and
analyze the inherent patterns of play out of event traces extracted from event data. We
present a purpose-driven methodology to reduce the variance and lack of structure in the
traces, highlight frequent patterns of play, and facilitate the control flow identification to
produce the most accurate models of team strategy. Hence, we contribute to defining a
knowledge discovery pipeline to manage and analyze the large-scale availability of event
data for team strategy identification. We also demonstrate how the models could be
integrated into football-specific visualizations to provide a novel and better understanding
of a team's execution and performance during a game. The methodology is evaluated in
the 2021/2022 season of the English Premier League.

Related work
To contextualize the rest of the paper, this section provides the background on Process
Mining methodologies for unstructured process analysis and the main contributions
regarding the motivation use case of identifying playing strategy in football.

2.1 Process mining unstructured systems
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Process Mining �PM� is a semiautomatic evidence-based methodology to discover,
monitor, evaluate, and improve processes �7�. It untangles the differences between the
event logs of a behavior or system and the actual processes. PM combines traditional
data-driven models sourcing from Business Project Management research with modern
data mining and machine learning techniques to identify recurrent patterns in historical
event data and shape the inherent process models. Process discovery allows an
automated definition of a behavioral process from the collected event data �8�. These
process models might come in several forms. Additionally, conformance-checking
techniques provide methods to measure the deviations between the theoretical
processes (i.e., plan or strategy) with the processes seen in reality (i.e., execution) �9�.
These methods leverage the variants and deviations that might occur between the
occurring events and the process model underneath �10�.

The process-aware analysis assumes the collected event data results from a dynamic
behavior process. Roles and actors interact towards a common objective or function in
time and execute certain patterns, orders, and flows. Other analysis techniques, such as
episode mining �11�, also perform pattern-matching tasks on sequences but do not
consider the end-to-end process and the set of actors. Processes can be structured or
unstructured. Examples of structured processes can be found in event logs sourcing from
digital systems such as websites or transaction-based information systems. In these
processes, cases are highly stable, and deviations from the theoretical process are
scarce.

However, PM popularity in industry and research has increased in recent years from
various applications and domains �10�, processes no longer must have a predefined
structure, and they combine elements from digital information systems with events
captured from real environments. Therefore, the model discovering algorithm cannot
assume all possible behavior is reported in the event logs. Integrating such natural
processes in PM analysis can bring invaluable knowledge and significant benefits, but it is
also more challenging. Stefanini et al. �2020� �12� present a methodology to handle
unstructured processes by combining algorithms, narrowing the event logs cases, and
visual analytics, in an environment where the inherent process is unknown, and the event
logs contain a high heterogeneity. Innovative data-driven methods effectively exploit the
collected event data by leveraging noise and low-frequency behavior. The Heuristic Miner
�13� tries to deal with the noise in the data and the high variety between logs by applying
some heuristics to infer the underlying process model. Similarly, Günther et al. �2007� �14�
introduce a frequency-based approach, the Fuzzy Miner, producing a process map
representing the precedence relationships in the sequences. Model overfitting or
underfitting can be tuned by modifying the frequency threshold on nodes and paths to
filter out infrequent behavior. The incompleteness of the observed data is tackled by
Leemans et al. �2014� �15� providing a modification of the Inductive Miner with
probabilistic behavioral relations that allow for a more accurate approximation to the
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original system. We refer to Leemans et al. �2015� �16� for a comparison and detailed
explanation of the existing algorithms for sequence mining and process-aware discovery.

The visual representation of the discovered models also plays an essential role in the
discovery training and evaluation. A process discovery model's output is represented
visually and conceptually by means of a process modeling language �17�. These
languages can be notation-based graphical representations of workflows like BPMN �18�
or mathematical models representing discrete variables, states, and transitions such as
Petri Nets �19�.

2.2 Team strategy data-driven identification in football
The advances in data collection technologies, optical tracking data, and data labeling
enable the addition of significant attributes to each event in almost real time2. Hewit et al.
�2016� �4� identify player and ball movements as highly important in determining a team's
style in terms of time and space. Strictly excluding any information from the events
occurring in a football game, tracking data still conveys much information on how the
team is playing. For instance, team formations can be identified using tracking data �20�.
Football team formations describe the roles of each player on the field and are highly
coupled with team tactics and strategy �21�. Team tactics are expected to include
guidelines and rules for every game phase. Tracking data analysis can also identify
different game phases; moreover, team tactics are not approached holistically but in a
narrowed environment with clear team objectives, for instance, when performing
counter-pressing �22�. The granularity and frequency of tracking data can also retrieve
collective metrics such as team centroids or space control measures relevant for
identifying how a team attacks �23�. Tracking data also can help shed light on the
collective behavior of teams depending on their defensive strategies �24�. However, using
event data, the players and ball positions are available only when related to an on-ball
event, and the analysis only accounts for the scarce positions reported at event time.
Nevertheless, several contributions obtained highly valuable tactics and insights from
event data.

Most advanced approaches acknowledge the sequentiality of the event data source. On
the one hand, methods like VAEP �25� use probabilistic classifiers to value each action or
a subset of actions occurring in the game. Once every action has been assigned a value,
teams or players can be categorized by how much they rely on their contribution to
success. For instance, Team A's increase in winning probability can come from their
passing ability in the midfield, while Team B relies on long individual dribbles. On the other
hand, the sequentiality of event data can be exploited by finding spatiotemporal patterns.
In these cases, finding frequent sequences of events within football possessions is
challenging because possessions vary greatly in length, actions performed, players

2 360 Data. The Industry's Most Detailed Soccer Data,
https://statsbomb.com/what-we-do/soccer-data/360�2/, accessed 11/11/2022
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involved, and location on the field. Bekkers et al. �2019� �26� extend the concept of
network motifs applied to passing sequences in football �27� to provide a tactical and
statistical analysis of passing behavior in football. However, these motifs do not include
any spatiotemporal information about the events, and the time between passes is
restricted. However, in a process-aware analysis, the time between activities is taken into
account for the process discovery �8�. In a similar approach to this paper �28�, the authors
apply clustering techniques and a success score metric to discover frequent sequential
patterns at the team level. Sequential patterns are also studied in buildup plays �29�. The
authors use a grid division as well as additional game states stemming from the
availability of teammates and defenders to build a Markov decision process and visualize
the most frequent combinations in buildup scenarios.

PM has been preliminary explored to provide a process-aware analysis of team strategy
playing in ball possession phases and attacking sequences, where on-ball events are
more frequent3. Kröckel et al. �2020� �30� show the potential of end-to-end process
analysis of football event data focusing on a small sample of games and describing the
new insights and visual analytics a methodology like PM can provide. Process discovery
techniques are able to retrieve information on frequent patterns and players'
collaboration.

Constructing team traces from event data
A football match comprises several situations differing in context, players involved,
location on the field, and moments of the match. The variability of events that occur in a
game, together with the heterogeneity of goal-setting occasions that players and teams
phase at different moments of the game, requires a systematic approach to process event
data and untangle team-style models. For instance, teams might arrange their players in a
certain formation and perform a set of tactics to reach the opponent's goal when having
full control of the ball. At the same time, in other cases, they might focus on maintaining
their ball and restructuring their attack. Depending on these circumstances, the team
might display different behavior patterns, and it is crucial to capture and analyze these
patterns in concordance with the team's objectives.

3.1 Team purpose-driven sequences
The proposed methodology for processing event data, identifying purpose-driven team
sequences, and discovering team patterns is displayed in Figure 1. Initially, the raw event
data is ingested. Event data might come in slightly different formats depending on the
data provider. However, most of the syntax and semantics of the data will include a chain
of events performed by any of the two teams. The second step involves dividing these
large sequences into subsequences. Thus, the raw event sequence can be divided into

3 Process Mining Meets Football! How Does a Football Team Possess The Ball On The Pitch.
https://fluxicon.com/blog/2019/10/process-mining-meets-football-how-does-a-football-team-pos
sess-the-ball-on-the-pitch/, accessed 08/11/2022
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sequences where each team has the ball, usually referred to as possessions. A
possession begins when a team gains the ball and ends when the match is interrupted
(i.e., ball out of bounds, end of a period, or foul), the team in possession scores, or the
other team regains possession of the ball.

The next step involves defining specific analysis questions translated into team objectives
in the field. Team possession traces are filtered to obtain all the possessions where the
team acted with common characteristics, specifications, or outcomes. While knowing the
ground truth of what the team aimed at a certain moment of the game is impossible,
traces can be filtered by how they started (e.g., location in the field), the player who
gained the ball, or the number of certain events. This purpose-driven filtering reduces the
variability in the actions to benefit the discovery and interpretation of the models.
Examples of analysis questions that could benefit from the creation of these team
purpose traces could be but are not limited to: Traces that reach a certain zone in the
field (e.g., the opponent penalty box, zone 14, offensive third, etc.), traces starting from
the goalkeeper and end in a turnover in the team's own half, or traces that start with a
recovery in the team's own penalty box and end in the offensive third in less than 15
seconds.

3.2 Field partitioning
In order to identify larger-scale patterns and trends in field usage, team purpose traces
are also spatially aggregated using a grid-based partitioning method where the entire
field is divided into a grid of cells, and the event location is assigned to the cell that falls
within. Field partitioning allows the discovery of models to identify similar patterns even if
the events' trajectories are not exactly the same. The choice of method for partitioning
the field could be exchanged depending on the analytical use case �31, 32, 29�. An
example of a simple field partitioning with highlighted common cells between two event
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sequences is shown in Figure 2. Overall, the choice of partitioning method will depend on
the specific characteristics of the data, the purpose filtered developed, and the overall
team tactics. Other data-driven split criteria are available, such as hierarchical partitioning
or trace clustering �28�.

Figure 2� A simple field partitioning helps highlight the common zones the team used to build the
sequence up and access the opponent penalty box.

Discovery of team processes
Once the team traces have been defined, the goal of the final steps of the methodology
proposed is to configure the process discovery approach and interpret the resulting
artifacts. Team traces are transformed into a compatible format for the Heuristic Miner
�HM� algorithm. For each trace, several attributes are described according to the
conceptual model so that the discovery can be executed.

The HM algorithm is based on the construction of a dependency graph. The dependency
graph is a frequency-based data structure that gathers a level of certainty of the
dependencies between events present in the data. Once this structure is constructed, the
process model is inferred from these dependencies, for instance, activities are identified
that directly follow other events, and parallel flows are identified if two activities occur
very often together and have similar dependencies. Finally, the algorithm also detects
loops of activities and adds them to the model. The model can take various forms or
syntaxis, for instance, a direct graph or a Petri Net. The resulting model can be refined by
adjusting the relations between events or removing unnecessary activities. We refer to
Weijters et al. �13� for a complete technical description of the HM algorithm.

Several attributes are mandatory for the algorithm. The case identifier of a trace is the
unique identifier assigned to a specific instance of a process. It groups all the events that
belong to a single process instance. Thus, every team purpose trace is assigned a unique
identifier that will allow the mining algorithm to group the events and treat the sequence
as a trace. The activity identifier is the identifier assigned to a specific task or activity in
the trace. The aimed process is assumed to consist of different actions or steps identified
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by the activity identifier. The activity identifier of an event is configured as the compound
key between the action type and the assigned zone in the field after adding the field
partitioning. So, a step in the process is modeled as a certain type of action in a certain
field zone. Additionally, other attributes are indicated to the mining algorithm, such as the
event's resource (i.e., the player performing the event) and the timestamp of the event.

The discovery process ingests the traces of all the event logs and produces two artifacts
as outputs, a Petri Net and a Heuristic Net. We base our discovery approach on the
Heuristic Miner �HM� �13, 33�. The miner algorithm constructs a dependency graph and a
causal matrix accounting by a dependency threshold definition. We opted for a threshold
dependency of 50%. Thus, the algorithm considers dependency values over 50% to
ensure we are not capturing low-frequency behavior but also allows the final model to be
generalizable to new data. We used the implementation of the HM presented in the
Python package PM4PY �34�.

4.1 Evaluating the models: Fitness vs. Generalization
The evaluation of the extracted models is also subject to complexity as there is no
objective ground truth documenting the strategy of football teams or the tactics deployed
during certain moments of a game. Therefore, the models' validity is evaluated in two
phases. First, the correctness of the model is evaluated in terms of the recall measure,
usually referred to in PM as fitness. Model fitness refers to how much the generated
model can execute the observed event logs. Model fitness can be easily computed by
replaying the traces of the event log into the generated model and assigning a trace fit if
it can be executed in the model. Last, the model's usefulness in describing a team
strategy is measured by its generalization. Generalization tries to quantify how much a
model can fit unseen behavior. We refer to the work of Buijs �35� and Syring �36� for a
detailed description and comparison of these two metrics.

4.2 Heuristic Maps: Translating process models to football
A Heuristic Net is a causal network involving actions or tasks as nodes. Arcs between
these actions represent the dependency between them. These arcs are weighted with an
indication of relative dependencies between nodes. Thus, this network structure infers
dependencies between actions in the event logs and allows an understanding of how a
certain overall goal is performed by dividing it into several steps and dependencies
between them. This logical outcome can be explored directly from the result of the HM
algorithm.

However, translating these models into practical information takes time and effort.
Therefore, we also present a domain-driven mapping of these logical structures into the
so-called heuristic maps. Heuristic maps stem from the basic ideas presented in existing
contributions, such as passing networks or passing flows. However, its content is based
on the information represented for the causal network produced by the HM. A detailed
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explanation of the proposed Heuristic maps visualization is presented in Figure 3. To
construct a Heuristic map from a Heuristic network, the following steps are followed.

● Start and end zone. Each zone of the field is assigned a standardized weight from
0 to 1, referring to how much that zone is used to start the possession or to end. If
the weight of the zone is 1, the zone is highly related to the end of possessions. On
the other side, if the weight is 0, the zone is related to the start of possessions. A
color scale visually represents this weight.

● Zone usage. Each zone is then assigned a value depending on how much this zone
and any arbitrary action is present in the heuristic network. Thus, this value refers
to the importance of a certain zone to the purpose of the traces.

● Zone dependencies. The edges of the network are used to connect the zones and
visualize the dependency between them.

Experiments
To demonstrate the ability of the proposed approach to infer and visualize team
strategies for specific purposes in a game, we analyzed all team traces in which the
attacking team successfully introduced the ball into the opponent's penalty box, and the
possession did not originate from the last offensive third. After filtering and aggregating
the data at the seasonal level, we present the most significant findings in the following
sections. Firstly, we address the identification and representation of team-specific
strategies; specifically, we investigate how teams penetrate their opponent's penalty box.
Secondly, we evaluate the coherence of these strategies as an indicator of their resilience
in executing their strategies. We assess the regularity with which teams adhere to these
strategies throughout the season.
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5.1 Discovering team strategies
The resulting event traces contain all the different ways each team could penetrate the
opponent's box. Thus, the discovery process aimed to identify patterns that could explain
how each team approaches this task. However, such models can be difficult to interpret
due to their complexity. Nonetheless, they are interesting artifacts for closer examination.

Table 1� Fitness and generalization of the team style models extracted from 6 teams of the English
Premier League, 2021/2022 season

Team Fitness Generalization

Manchester City 0.877 0.703

Arsenal 0.818 0.712

Manchester United 0.814 0.701

Liverpool FC 0.828 0.717

Tottenham Hotspur 0.785 0.733

Chelsea 0.820 0.707

Table 1 presents the fitness and generalization metrics for the top six teams in the English
Premier League during the 2021/2022 season. The table shows Manchester City had the
highest fitness score �0.877�, and Tottenham had the lowest �0.785�. Regarding
generalization, Tottenham Hotspur had the highest score �0.733�, and Manchester United
had the lowest �0.701�. These results suggest that Manchester City had the most
consistent and predictable behavior on the field, while Tottenham had the most variable
and difficult to predict behavior. Additionally, Tottenham Hotspur had a league-relative
strong performance on fitness and generalization metrics, indicating a good balance
between fitting to observed data and generalizing to new situations.

We can translate the logical models into Heuristic maps. Figure 4 shows the process
models extracted from Manchester City �MC�, Arsenal, Manchester United �MU�, and
Liverpool. The causal relationships identify reasonable patterns if we analyze the
Heuristic maps in detail. MC has larger connectivity between zones, denoting a high
usage rate of all possible field parts and interconnecting them by their midfield players,
including the areas closer to their own goal. On the contrary, teams like MU or Liverpool
barely use the closest areas to their goalkeeper, and their advance to more attacking
positions is fixed to the center of the field. When reaching the midfield, MU utilizes all the
width of the field. However, MU crosses the midfield more times to the flanks and less
often to the center areas. Similarly, Liverpool also uses all the width of the field to cross
the midfield. This behavior is even clearer when advancing in the offensive third, where

10



they use the flanks with higher frequency, especially the left attacking flank. MC and
Arsenal show different patterns in these zones; first, the midfield is approached mostly
from the middle channels, and it is crossed quite equivalently to all channels with a small
increase in the left side of the field for Arsenal. Overall, these maps aim to translate the
logical findings by the process discovery algorithm. They give a general overview on how
teams unfold their process towards the specific objective.

Figure 4� Seasonal Heuristic maps for English Premier League teams Manchester City (a), Arsenal
(b), Manchester United (c) and Liverpool (d).

5.2 Team strategy regularity
The discovery of these process models at the team level is difficult to evaluate as we
need ground truth data. As this information is unknown, the efficiency of these models
remains attached to how to interpret and use them. In this use case, we present an
analysis to determine how regular teams are in their way of performing certain objectives
(e.g., penetrating the opponents' penalty box). Thus, we refer to team strategy regularity
as the ability of a team to remain resilient in some behavioral patterns throughout a set of
games. We analyzed the seasonal models for the top six teams of the English Premier
League with data from the 2021/2022 season and reviewed each round of the
competitions. All the team purpose traces were replayed in the seasonal model for each
round. Therefore, the execution of an individual match was compared to the overall
inference of the team strategy at the end of the season. The fitness of a trace is a value
between 0 and 1 that refers to the model's ability to replay that trace. Determining
whether a trace is replayable by a model refers to checking whether a given sequence of
events (the trace) can be successfully and completely executed based on the rules and
structure defined in the process model. This usually involves simulating the execution of
the trace within the process model, ensuring that each step in the trace can be executed
according to the model's rules. If the entire trace can be replayed without encountering
conflicts or violations of the model's structure and constraints, it is considered replayable.
Figure 5 shows the fitness by round and the overall fitness of each team. Matches with
higher fitness mean that the actions unfolding on these matches are correctly
represented by the seasonal models. Lower fitness values indicate infrequent behavior in
those matches. We also computed the mean square error between the fitness at every
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round and the overall season fitness (ε). Interestingly, teams such as Manchester City or
Arsenal show a high consistency of fitness in their matches, which could lead to
identifying these teams as resilient to their style of play or strategy. Conversely, teams
like Manchester United or Tottenham show larger spikes in their fitness against the
seasonal models, denoting lower consistency in how they approach the task.

Figure 5� Team strategy regularity of the six teams of the English Premier League in 2021/2022.
Season team strategy is evaluated at every round. Round fitness indicates whether each round's
team traces align with the identified strategy at the end of the season. ε is the mean square error
between the fitness at every round and the overall fitness. Examples of regular teams are
Manchester City, Liverpool or Arsenal. Conversely, teams such as Manchester United, Tottenham,
or Chelsea show more irregularity in their strategies.

Discussion
The analysis of large-scale event data in this field presents significant challenges, such as
data variability and the complexity of team interactions for sequential modeling and
pattern mining. Process mining and visual analytics are emerging and promising
approaches for addressing these challenges and unlocking valuable insights from sports
big data sources. We propose a methodology that employs purpose-driven filters and
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field partitioning techniques to reduce the variance in football event sequences. These
techniques enable us to focus on specific aspects of the game, such as attacking or
defending, and to analyze the distribution of events on the field while keeping the logic
underneath the team tactics. Using process discovery techniques, we extract logical
artifacts that represent the team behavior in the field. These logical artifacts are then
translated into Heuristic maps, a football-based visualization that allows for a detailed
description of teams' event distribution on the field and dependencies between actions
towards a certain objective.

The results show the potential of this approach for in-depth analysis of team behavior
and how their strategy is implemented towards penetrating the opponent's box. In
addition to providing insights into team strategy, this methodology can also be used to
measure the regularity or resilience of a team to preserve a certain strategy of play over
the season. We can gain a better understanding of how teams adapt and evolve and how
different strategies may be effective against opponents. This methodology could be
combined with domain-specific analysis where different game states are considered and
compared (e.g., differences depending on the match score or match context). While the
focus of this analysis may not be directly related to success or finding productive patterns
of play, the insights gained from the methodology can have significant implications for a
team's ability to achieve its goals on the field. By understanding how teams execute their
strategies and adapt to changing circumstances, coaches and analysts can develop more
effective game plans and improve game execution, ultimately leading to greater success
on the field. Most importantly, practitioners could develop predesigned process models
representing the team plan or desired behavior and compare these models to the
data-driven discovered models.

We also extend the current state of research by providing interpretable outputs in the
form of logical artifacts such as Petri nets, Heuristic nets, and visual artifacts, introducing
team Heuristic maps. Heuristic maps offer a complete view of team strategy for a given
task, and they can be employed to analyze opponents' strategies or to validate team
execution plans. This new visualization provides player interconnections and frequency of
actions like passing networks. However, it increases its interpretability in motion-based
team tactics by providing information about the starting and ending zones of the field and
the dependencies and usages of each zone. Additionally, while ground truth validation is
not possible, we provide evaluation metrics to measure the accuracy of the identified
tactics.

Some limitations also restrict the presented methodology. First and most importantly, the
proposed methodology could be highly improved by integrating tracking data into the
sequences. For instance, off-ball events could be automatically added to the event log to
better understand each trace's logic and the overall process model. Also, the events lack
contextual information about the other players' locations, which could lead to a better
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analysis �29�. Regarding the usage of solely event data sequences, this paper could be
extended by adding time-aware semantics to the process discovery. For instance,
highlighting the time needed to perform a set of actions or identifying frequent paths
shorter than others (i.e., fast-tempo moments of a football game). Furthermore, due to
the inherent unsupervised nature of the pattern discovery task, the patterns are not
subject to ground truth validation. To further develop this methodology, it would be
convenient to validate the findings with experts (i.e., coaches) and assess their value.
Overall, combining process mining and visual analytics techniques with domain-specific
knowledge and expertise can unlock valuable insights from large-scale event data
collections and gain a deeper understanding of player behavior and strategy in team
sports for different purposes.
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