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Introduction 
The year 2023 has witnessed significant progress in Generative AI. One would have, in 
fact, needed to have been living under a rock not to notice the surge in AI-based digital 
assistants powered by Large Language Models (LLMs). While these models have 
garnered considerable attention from the public, they have also achieved notable 
benchmarks in performance. They have proven their potential in various applications, 
especially natural language processing (NLP) and sequential data generation, including 
program code and protein sequences. However, their potential in the realm of sports 
remains largely untapped. Thus, in this study, we take the first steps toward uncovering 
the potential of state-of-the-art LLMs as tactical analysts by introducing TacticalGPT, 
an AI-based assistant coach for professional football. 
 
Drawing upon the now-famous GPT architecture, we investigate, in this early study, the 
abilities of LLMs to comprehend and generate analytical and tactical insights concerning 
both on-ball and off-ball situations using natural language. Leveraging StatsBomb 
event-based data, we fine-tuned a foundation model using low-rank adapters on 
100.000 artificially generated textual sequences derived from diverse play patterns and 
events extracted from the 580 Premier League fixtures from the 2021/2022 and 
2022/2023 seasons. Ultimately, this study seeks to assess the practicability, viability, 
and benefits of using a text-based approach over traditional statistical and predictive 
methods, specifically by focusing on the generation of human-like responses to What, 
Who, and Where prompts. 
 
Our initial results are promising and show that TacticalGPT can effectively discern 
strategic patterns in textual sequences and respond accurately to diverse prompts with 
high factual correctness. In fact, the evaluation indicates that the model produces 
responses that align perfectly with the ground truth for What-type and Who-type 
questions 50% and 32% of the time, respectively. Furthermore, the model generates 
factually plausible answers 96% and 94% of the time for What-type and Who-type 
questions, respectively. Consequently, we assert that this approach to sports analytics 
presents multiple advantages, such as helping coaches and analysts better tailor their 
preparations against a particular opponent. In addition, the interactive nature of LLM-
based assistants facilitates the intuitive exploration and understanding of tactical 
decisions and may become the coaching staff's most valuable advisors, as already 
discussed by [12]. 
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Technical Background 
Publicly available LLMs, like ChatGPT [8] or Bard [4], possess remarkable natural 
language understanding and generation capabilities and can capture and reproduce 
broad world knowledge. These models are trained on publicly available, large-scale 
datasets that encompass encyclopedias, news articles, and online forums. 
Consequently, such models are not equipped to respond to prompts related to 
proprietary, non-public data, such as a football team’s tactics and strategies. To 
address this shortcoming, four methods are currently available for incorporating such 
domain-specific knowledge into LLMs, which we detail below [2,10]. 
 
Firstly, an LLM can be trained from the ground up. This method demands significant 
data and computational resources, making it a less common choice for organizations 
other than major players like OpenAI, Google, and Meta. For instance, Bloomberg has 
developed its own LLM, known as BloombergGPT, by training it on a dataset that spans 
over 40 years of financial news articles and includes over 700 billion tokens [13]. One 
primary benefit of this approach is that the resulting LLM will operate strictly within the 
vocabulary of the targeted domain. 
 
Secondly, Domain-Adaptive Pre-Training (DAPT) offers a way to align an LLM with the 
specific writing style of a given domain [5]. This method involves augmenting a pre-
trained model with domain-relevant content, a feasible strategy due to the increasing 
number of organizations and research groups releasing pre-trained LLMs. Unlike 
training from scratch, DAPT requires significantly fewer documents and computational 
resources – i.e., on the order of hundreds of thousands rather than millions or billions. 
However, the resulting LLM may still produce phrases not commonly found in the 
domain’s language – i.e., a byproduct of the initial pre-training. Additionally, the training 
data for both the initial pre-training and DAPT can vary in terms of quality, length, and 
style. Therefore, it is not assured that the LLM will consistently respond to user prompts 
in a conversational style, as is typical for models like GPT-4. 
 
Thirdly, fine-tuning serves as another approach to modifying the behaviour of an 
existing LLM. Similar to DAPT, this strategy also incorporates domain-specific texts into 
a pre-existing model. The key difference lies in the quality and structure of the texts 
used: fine-tuning employs carefully selected, high-quality demonstration data that 
aligns closely with the intended application. For instance, if the LLM’s primary function 
is to answer questions, the demonstration data should consist of relevant questions and 
their respective answers. An illustration of this method is Med-PaLM2, a fine-tuned 
version of Google’s PaLM2, which was trained on medical texts specifically structured 
to mimic the United States Medical Licensing Examination (USMLE) format [11]. The 
benefit of this approach is the improved predictability and utility of the LLM compared 
to solely pre-trained models. However, it necessitates access to an extensive collection 
(10,000+ documents) of structured, high-quality texts. 
 



 

3 

Lastly, reinforcement learning offers a method to further calibrate an LLM’s responses 
to meet user expectations [9]. In the process known as Reinforcement Learning on 
Human Feedback (RLHF), human experts in the domain evaluate several outputs 
generated by an LLM for a single prompt. These experts rank the outputs based on 
predefined quality criteria, such as truthfulness or helpfulness. This ranking serves as 
feedback to adjust the model for better alignment with the selected criteria. OpenAI has 
successfully employed RLHF to refine the performance of its InstructGPT models, 
including ChatGPT and GPT-4, to be more in line with user needs [7]. Studies involving 
user assessments indicate that RLHF can substantially enhance the quality of LLMs that 
have already undergone fine-tuning. 
 

 
 
Methodology 
Figure 1 provides a high-level overview of the methodology employed in this study. 
Drawing inspiration from OpenAI's approach to aligning LLMs to follow instructions [7], 
our approach unfolds in three distinct phases. First, we create a dataset comprising a 
variety of natural language phrases extracted from the structured data, serving as the 
basis for the subsequent stages of our methodology. In the second phase, a supervised 
learning technique focussing on low-rank adapters is used to fine-tune a foundation 
LLM using the generated sequences. Lastly, the model undergoes further refinement 
through Reinforcement Learning from Human Feedback (RLHF), ensuring its alignment 
with user requirements while enhancing its utility and performance. 
 
3.1 Dataset Generation 
As previously noted, we concentrate, in this work, on three main types of prompts or 
questions, namely: 
 

• What – i.e., in a given/described situation, what is a team or player most likely 
to do next?; 

• Who – i.e., in a given/described situation, which player is most likely to execute 
a specific action? (e.g., taking a free kick); and 

• Where – i.e., in a given/described situation, where are the players likely to be 
positioned on the pitch? 

 
Given that our approach revolves around structured event-based data provided by 
StatsBomb, the initial phase of the study focused on generating textual sequences, 
namely prompts and responses, to act as training data for our model. Hence, as exposed 
in Figure 1, we began by analysing various play patterns, events, and match situations 
contained within the 580 Premier League fixtures from the 2021/2022 and 2022/2023 
seasons. The objective was to identify the best way to transform the available data into 
machine-readable text using a rule-based approach. Based on this analysis, we then 
formulated a set of so-called templates (Phase 1) using plain language for each of the 
aforementioned prompt types. For example, in a situation where a possession 
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commences with a free kick – i.e., From Free Kick – a representative template would 
look as follows: 
 

<team></team> gets a free kick in <location></location>. 
<position></position> <player></player> takes it. 

 
It should be noted that each template contains XML-style tags such as <team></team>, 
<position></position>, <player></player>, and <location></location>, 

which are designed to enable the insertion of specific information in subsequent steps. 
Additionally, to enhance the usability of location tags for the end-user, we transformed 
all sets of coordinates into distinct zones, effectively partitioning the football pitch into 
a traditional 18-zone system. 
 

Figure 1: Pipeline – TacticalGPT 
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Next, utilizing the hand-crafted templates formulated in Step 1, we automated the 
generation of semantically equivalent templates tailored for each specific scenario or 
sub-scenario. This step, referred to as Data Augmentation (Step 2), involved using 
ChatGPT (GPT-4) to produce variations of the above templates in a manner consistent 
with the language associated with professional football and sports analytics. While the 
typical objective of data augmentation is to expand the dataset in cases where data is 
limited, our aim was different. Specifically, we sought to train a model capable of 
responding in a manner that aligns with the user's language style. Relying solely on our 
original hand-crafted templates would have restricted the user to a fixed language or 
sentence structure, contradicting the flexible nature expected of a digital assistant. 
Therefore, creating numerous variations of each template facilitates a more natural 
interaction through realistic prompts and responses. 
 
Ultimately, leveraging the dictionary of templates augmented in Step 2, we generated 
textual sequences by combining multiple text blocks randomly and populating those 
with events from the various matches (Phase 3). As exemplified in Figure 2, this 
technique enabled the transition from a structured to an unstructured data state, 
effectively converting hard information into soft, LLM-readable information. It should, 
however, be emphasised that responses to Where-type prompts solely consist of a set 
of coordinates – i.e., StatsBomb 360. These coordinates are designed for utilisation in 
graphical representations, such as plots, rather than textual descriptions. 
 

 
Figure 2: Dataset Generation 
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3.2 Supervised Fine-Tuning 
Proceeding to the supervised fine-tuning phase, we began by carefully selecting and 
initialising a suitable foundation model – i.e., a generic deep learning model initially 
trained on a large amount of unlabeled data to accommodate diverse tasks and 
objectives. For this early study, we opted to experiment with the GPT-NeoX-20B 
architecture [1] – i.e., a 20-billion parameter autoregressive language model similar to 
GPT-3 – which was initially trained on a substantial dataset of 825 GiB, sourced from 
diverse, open-source language corpora. While numerous foundation models are 
currently available, GPT-NeoX-20B stands out for its robust performance across 
multiple tasks and its relative efficiency compared to larger architectures [1]. Lastly, 
building on the aforementioned efficiency and the capacity to fine-tune our model using 
consumer-grade graphics processing units (GPUs), we opted for 4-bit quantisation in 
conjunction with Low-Rank Adapters (QLoRA) – i.e., an efficient fine-tuning method that 
minimises memory consumption while maintaining 16-bit task performance for task-
specific adaptability [3]. In essence, adapters are learnable components inserted 
between a pre-trained model's layers, eliminating the need to retrain the whole 
architecture [6]. 
 
Moving on to the second step, we decided, in order to enhance performance and factual 
accuracy, to provide our model with additional task-specific information during training, 
also known as context. More precisely, we chose to augment the data with the starting 
lineups for each team, a form of semi-structured data. In the future, we will experiment 
with adding other contextual information that might influence a team's tactics, like the 
current game state, into this context. This additional input was seamlessly integrated 
with the previously generated prompts to guide the model to produce responses that 
correctly identify players affiliated with their respective teams, thereby refining its task-
specific capabilities. 
 
Lastly, we fine-tuned our model using a next-token prediction objective by focusing on 
the low-rank adapters, limiting the process to a maximum of two epochs. In order to 
enhance the model's performance, we implemented adaptive learning rates and applied 
early stopping as a regularisation technique. Additionally, the AdamW algorithm was 
employed for stochastic optimisation. As common in most language modelling tasks, 
the primary objective was to train the model to discern the statistical correlations 
between successive tokens in a sequence. This enables a model to predict forthcoming 
tokens based on the previous ones, thus generating contextually appropriate and 
coherent text. 
 
3.3 Reinforcement Learning 
While not encompassed in the scope of this early work, the final phase aims to refine 
the model initially fine-tuned during Phase 2, employing Reinforcement Learning from 
Human Feedback (RLHF). As emphasised by OpenAI, this process is critical for 
achieving a model that is “safer, more helpful, and more aligned” [3]. Specifically, using 
RLHF is expected to result in a model adept at following instructions, consequently 
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generating more realistic responses adapted to a target audience of football 
professionals.  
 
Using samples previously unseen by the model during the supervised fine-tuning phase, 
the first step consists of generating two non-identical responses for each sample. Then, 
a panel of football professionals is tasked with determining each prompt's best 
response based on a given context – i.e., a specific game situation. In the subsequent 
phase, the annotations provided by the expert panel serve to train a preference model, 
also referred to as a reward model, for the purpose of ranking the responses generated 
by the fine-tuned model. Ultimately, the last step focuses on employing the preference 
model to further refine the model initially fine-tuned in Phase 2, using the reward signals 
induced by the provided human feedback. 
 

 
 
Results 
In the setting of our application, the priority was to evaluate the model's factual 
accuracy rather than traditional LLM qualities such as creativity or fluency. Particularly 
in a domain like professional football, where coaches and analysts depend on 
trustworthy data for strategising against opponents, it is imperative that such a digital 
assistant refrains from producing inaccurate or hallucinated statements. 
 
4.1 Textual Questions (What / Who) 
 
Starting with What-type and Who-type questions, we evaluated our model using 100 
unseen prompts inferred using a greedy decoding inference strategy – i.e., a 
deterministic approach by which the token with the highest probability at each decoding 
step is selected. For this evaluation, we employed a panel of two human annotators to 
conduct a rigorous evaluation of our model's performance. Given that traditional 
automated metrics have shown limitations in evaluating the nuanced output of Large 
Language Models, this human-centric evaluation allows for a more reliable and domain-
specific assessment of the model's capabilities. Hence, the generated responses were 
scored across several criteria, including factual accuracy, identification of the correct 
player, and accurate zoning. This multi-faceted evaluation comprehensively assesses 
the assistant's dependability and usefulness. 
 
Table 1: Factual Correctness  

Type Correct Plausible Improbable 

What? 25  
(0.50) 

23  
(0.46) 

2 
(0.04) 

Who? 16 
(0.32) 

31 
(0.62) 

3 
(0.06) 
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As can be seen in Table 1, we assessed the factual correctness, or accuracy, of our 
model utilising a three-class system system, namely: 
 

• factually correct – i.e., the generated response aligned precisely with the ground 
truth in terms of factual correctness; 

• factually plausible – i.e., i.e., the generated response, while not perfectly aligning 
with the ground truth, remains within the realm of possibility based on the given 
context (e.g., a different type of pass or a different player affiliated with the team 
in possession); and 

• factually improbable – i.e., the generated response diverges significantly from 
the ground truth and presents information that is unlikely to be true within the 
given context (e.g., a player not affiliated with the team in possession). 

 
Building upon the above three-class system, the evaluation results, as exemplified in 
Table 2, offer a nuanced portrait of the model's performance. For the What-type 
questions, the model exhibits a robust factual accuracy, with 50% of responses falling 
into the factually correct category. An additional 46% were deemed factually plausible, 
corroborating that the model's output is largely consistent with realistic game situations. 
On the other hand, Who-type questions yielded a different distribution: 32% were 
factually correct, while a majority, 62%, were factually plausible. This suggests that 
while the model may not always pinpoint the exact player, it often produces responses 
that are within the realm of possibility. Importantly, the rate of factually improbable 
outputs remained low across both question types – i.e., 4% for What-type and 6% for 
Who-type – highlighting the model's general reliability. Additionally, a further analysis of 
What-type questions reveals that the model demonstrated noteworthy specificity in 
player identification and spatial awareness: 60% of the generated responses accurately 
identified the correct player involved in the scenario, and 64% correctly pinpointed the 
zone location of that player, whether through a carry or a pass. This adds another layer 
to our understanding of the model's capabilities.  
 
Table 2: Examples 

Prompt Ground Truth Generated Response Label 

Liverpool's Mané has the 
ball in Zone 15. What’s his 

next move? 

Under those 
circumstances, Liverpool's 
Mané, is likely to make a 
ground pass to James 

Philip Milner in Zone 15. 

Liverpool's Mané will 
probably make a ground 

pass to James Philip Milner 
in Zone 15. 

Factually Correct 

If Manchester United is 
given a throw in Zone 10, 

who will be taking it? 

Anticipate Manchester 
United's Antony Matheus 

Dos Santos taking the 
throw in given these 

circumstances. 

In this type of situation, 
Manchester United's left 

back Shaw usually handles 
the throw in. 

Factually Plausible 

In the event that Chelsea 
obtains a free kick in Zone 

12, who is expected to 
take it? 

It's a good bet that 
Chelsea's left center 

midfield Mount will take 
the free kick here. 

Given that situation, expect 
Chelsea's goalkeeper 

Revuelta to take the free 
kick. 

Factually Improbable 
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It is, however, worth emphasising that a factually plausible classification does not 
necessarily indicate an error on the part of the model. Employing a greedy decoding 
inference strategy constrains the model to generate the most probable response based 
on its learned patterns. Subsequent validation against our database confirmed that 
many of these factually plausible actions have indeed occurred previously. However, 
they may not align precisely with the ground truth for the specific prompt. This suggests 
that these actions may be less frequent or even more creative from the player's 
perspective. Thus, alternative decoding methods like sampling or beam decoding could 
provide a richer exploration of the model's learned distribution. 
 
4.2 Spatial Questions (Where) 
Continuing with the evaluation of Where-type questions, the same greedy decoding 
inference strategy was employed as for the previous question types. However, instead 
of relying on textual assessment, we examined the model's performance through a 
spatial lens, plotting the generated coordinates of 25 unseen samples against the 
ground truth. As can be seen in Figure 3, the results were less encouraging compared 
to What-type and Who-type questions. Given the situational context, the model 
predominantly generated coordinates that could be categorized as highly improbable. 
Given that these questions were trained on StatsBomb 360 data, it is clear that the task 
of accurately answering Where-type questions poses a significant challenge for the 
current model. This underscores the need for specialized refinement in future work, 
especially considering the high potential utility such inquiries could offer. 
 

 
Figure 3: Where? – Ground Truth vs Generated Response 
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Conclusion 
In conclusion, our work establishes a compelling precedent for integrating Large 
Language Models in sports analytics, particularly within professional football. 
TacticalGPT's ability to generate accurate and contextually relevant tactical insights 
presents a disruptive innovation in how coaching staff could prepare and harness data-
driven analytics for strategy development. By utilizing a natural language approach, 
TacticalGPT not only simplifies the interpretation of complex tactical data but could also 
expedite the decision-making cycle. This aids in reducing the latency between data 
acquisition and actionable insights, a critical factor in a fast-paced environment like 
professional football.  
 
The implications of this research extend far beyond the domain of tactical analysis. The 
intrinsic flexibility of the LLM architecture opens avenues for a plethora of applications, 
from individual player evaluation to real-time tactical adjustments. Given the promising 
preliminary findings, future research should focus on enhancing Where-type questions' 
performance. Our evaluation indicates room for substantial improvement in this area, 
signalling the necessity for specialized training and feature engineering. Additionally, 
investigating alternative decoding techniques like sampling presents a promising 
avenue for future research. Employing such a strategy could generate less common but 
plausible sequences, thereby revealing intriguing insights into less conventional plays 
or tactics. This would be particularly valuable for understanding the actions of highly 
skilled or creative players and teams, offering a nuanced layer of analysis that 
deterministic approaches may not capture. Hence, integrating these alternative 
decoding strategies could further elevate the model's utility, enabling it to discern 
unique or unanticipated strategies that could be pivotal in match preparations. 
 
In light of the advancements in Generative AI and the demonstrated effectiveness of 
TacticalGPT, we believe that LLM-based solutions may soon become indispensable 
tools within professional football clubs' analytics and strategy divisions. This research, 
therefore, serves as an initial but robust step toward redefining the contemporary 
landscape of sports analytics.  
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